On doubly transitive permutation groups of degree n and order $4(n-1) n^{*}$

By Hiroshi Kimura

(Received May 27, 1968)

§ 1. Introduction.

Doubly transitive permutation groups of degree n and order $2(n-1) n$ were determined by N. Ito ([4]).

The object of this paper is to prove the following result.
Theorem. Let Ω be the set of symbols $1,2, \cdots, n$. Let \mathbb{B} be a doubly transitive group on Ω of order $4(n-1) n$ not containing a regular normal subgroup and let Ω be the stabilizer of the set of symbols 1 and 2 . Assume that $\mathscr{R} \cap G^{-1} \Re G=1$ or Ω for every element G of \mathbb{B}. Then we have the following results;
(I) If \mathfrak{R} is a cyclic group, then \mathbb{B} is isomorphic to either $\operatorname{PGL}(2,5)$ or $\operatorname{PSL}(2,9)$.
(II) If K is an elementary abelian group, then \mathbb{B} is isomorphic to $\operatorname{PSL}(2,7)$. We use the standard notation. $C_{\neq \mathfrak{I}}$ denotes the centralizer of a subset \mathfrak{I} in a group \mathfrak{X} and $N_{\mathfrak{X}} \mathfrak{I}$ stands for the normalizer of \mathfrak{I} in \mathfrak{X}. We denote the number of elements in \mathfrak{I} by $|\mathfrak{T}|$.

§ 2. Proof of Theorem, (I).

1. Let \mathfrak{K} be the stabilizer of the symbol $1 . ~ \Omega$ is of order 4 and it is generated by a permutation K whose cyclic structure has the form (1) (2) \cdots. Since $(\mathbb{G}$ is doubly transitive on Ω, it contains an involution I with the cyclic structure (12) \cdots. We may assume that I is conjugate to K^{2}. Then we have the following decomposition of \mathbb{F};

$$
\mathfrak{B}=\mathfrak{5}+\mathfrak{I} I \text {. }
$$

Since I is contained in $N_{ब} \Omega$, it induces an automorphism of Ω and (i) $\langle I\rangle \Omega$ is an abelian 2 -group of type ($2,2^{2}$) or (ii) $\langle I\rangle \Re$ is dihedral of order 8 . If an element $H^{\prime} I H$ of a coset $\mathscr{I} I H$ of \mathfrak{K} is an involution, then $I H H^{\prime} I=\left(H H^{\prime}\right)^{-1}$ is contained in Ω. Hence, in case (i) the coset $\mathscr{S} I H$ contains just two involutions,

