Fractional powers of operators, IV Potential operators

By Hikosaburo KOMATSU

(Received Dec. 3, 1968)

A closed linear operator A in a Banach space X is said to be non-negative if $(0, \infty)$ is contained in the resolvent set of -A and if $\lambda(\lambda+A)^{-1}$ is uniformly bounded for $0 < \lambda < \infty$. This is a short supplement to the third paper of the author's series on fractional powers of non-negative operators A and mainly concerned with the potential operator associated with A, which is by definition the inverse A^{-1}_{-1} of the restriction A_{-} of A to the closure $\overline{R(A)}$.

A typical result is the Abel and the Cesàro (the Cauchy) convergence of the integral formula

$$A^{-1}x = \int_0^\infty T_s x \, ds$$

when -A is the infinitesimal generator of a bounded continuous (analytic resp.) semi-group T_t . A related integral formula of A^{α} with Re $\alpha < 0$ is also investigated.

§1. Potential operators.

Suppose that -A generates a bounded continuous semi-group T_t in a Banach space X. Then for $\lambda > 0$ we have

(1.1)
$$(\lambda + A)^{-1} x = \int_0^\infty e^{-\lambda s} T_s x \, ds \,, \qquad x \in X \,.$$

Letting $\lambda \rightarrow 0$, we may expect that

(1.2)
$$A^{-1}x = \int_0^\infty T_s x \, ds \,, \qquad x \in D(A^{-1})$$

Of course, this is not true in general, for A need not be even one-to-one.

Yosida [4] proves, however, that A has a densely defined inverse A^{-1} if and only if

(1.3)
$$\lambda(\lambda + A)^{-1}x \to 0$$
 as $\lambda \to 0$

for all $x \in X$ and that if this is the case, then the potential operator A^{-1} is