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Interpolation by the real method preserves
compactness of operators
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In this paper we will prove the following
THEOREM. Let $[E_{0}, E_{1}]$ and $[F_{0}, F_{1}]$ be arbitrary interpolation pairs, and

let $T$ be a continuous linear operator from the couple $[E_{0}, E_{1}]$ to the couple
$[F_{0}, F_{1}]$ . If the mappings $T:E_{0}\rightarrow F_{0}$ and $T:E_{1}\rightarrow F_{1}$ are compact, then for
$1\leqq p<\infty,$ $0<\theta<1T:S(\theta, p;E_{0}, E_{1})\rightarrow S(\theta, p;F_{0}, F_{1})$ is compact. Here $S(\theta,$ $p$ ;
$E_{0},$ $E_{1}$) is the interpolation space by the real method of Lions and Peetre [1].

When the couple $[F_{0}, F_{1}]$ satisfies a certain approximation hypothesis,
A. Persson [3] proved that if $T:E_{0}\rightarrow F_{0}$ is compact, then $T:E_{\theta}\rightarrow F_{\theta}$ is also
compact, where $E_{\theta}$ and $F_{\theta}$ are the interpolation spaces by the real or the com-
plex method.
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\S 1. Notations, definitions and fundamental facts.

For two linear topological spaces $\mathcal{E}$ and $q$ , we write $\mathcal{E}\subset S^{\gamma}$ if $\mathcal{E}$ is a linear
subspace of $q$ and the identity map is continuous.

A pair of Banach spaces $[E_{0}, E_{1}]$ is said to be an interpolation pair if
there exists a Hausdorff linear topological space $\mathcal{E}$ such that $E_{0}\subset \mathcal{E}$ and $E_{1}\subset \mathcal{E}$.
In this paper, when we write $[E_{0}, E_{1}]$ or $[F_{0}, F_{1}]$ we always assume that the
pair is an interpolation pair.

For $[E_{0}, E_{1}]$ we can define Banach spaces $E_{0}\cap E_{1}$ and $E_{0}+E_{1}$ with norms
$\Vert x\Vert_{E}$ on $E_{1^{={\rm Max}(\Vert x\Vert_{E_{0}}}}\Vert x\Vert_{E_{1}}$),

and
$\Vert x\Vert_{E_{0}+E_{1}}=Inf(\Vert x_{0}\Vert_{E_{0}}+\Vert x_{1}\Vert_{E_{1}} ; x=x_{0}+x_{1})$

respectively.
Given a Banach space $E$ and real numbers $p$ and $\theta(1\leqq p\leqq\infty)$ , we con-

sider E-valued sequences $\{a_{m}\}_{m=-\infty}^{\infty}$ such that $\{e^{m\theta}\Vert a_{m}\Vert_{E}\}\in l^{p}$ . In the linear
space of all those sequences, which is denoted by $l_{\theta}^{p}(E)$ , we introduce the
norm


