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The unique-continuation property of solutions of partial differential equa-
tions is closely related with the analyticity of solutions. So in this paper we
intend to study relations between the unique-continuation property of solutions
in some variables and the generalized analyticity of solutions in these vari-
ables. First we introduce various notions of generalized analyticity of vector-
valued functions, relative analyticity, relative quasi-analyticity, and those in
weak sense. Then we study the generalized analyticity of solutions of par-
tially elliptic or partially hypo-elliptic equations.

Only partial differential equations with constant coefficients are treated
here. In special cases the analyticity of solutions has been discussed even for
non-analytic coefficients. (For instance, see [5]). Generalization of our results
to the case of variable coefficients will be interesting but it seems to be
difficult.
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\S 1. Quasi-analyticity of vector-valued functions.

In this chapter we consider generalized analyticity and unique-continuation
property of a family $\{f_{\alpha}(t)=f_{\alpha}(t_{1}, t_{2}, \cdots , t_{n})\}$ of continuous functions defined
on a real domain $\Omega^{n}\subset R$“, whose range is in a locally convex linear space $E$.
We say that a family $\{f_{\alpha}(t)\}$ has the unique-continuation property if any two
elements $f_{\alpha}(\cdot)$ and $f_{\beta}(\cdot)$ which are equal on some open subset of $\Omega^{n}$, are identic-
ally equal on the whole domain $\Omega^{n}$ , and say that it has the strict unique-
continuation property if any two elements $f_{\alpha}(\cdot)$ and $f_{\beta}(\cdot)$ whose difference $f_{\alpha}(\cdot)$

$-f_{\beta}(\cdot)$ has a $z$ero point of infinite order, are identically equal on the whole
domain $\Omega^{n}$ .

1. Relatively analytic functions. As is well known, an E-valued function
$f(\cdot)$ defined on a complex domain $D^{n}\subset C^{n}$ or on a real domain $\Omega^{n}\subset R^{n}$ is
called analytic if and only if $f(\cdot)$ has a power series expansion


