On the alternating groups II

By Takeshi Kondo

(Received June 13, 1968)

Introduction.

Let \mathfrak{N}_{m} be the alternating group on m letters $\{1,2, \cdots, m\}$. Put $m=4 n+r$, where n is a positive integer and $0 \leqq r \leqq 3$. Let $\tilde{\alpha}_{n}$ be an involution of $\mathfrak{\Re}_{m}$ which has a cycle decomposition

$$
(1,2)(3,4) \cdots(4 n-3,4 n-2)(4 n-1,4 n) .
$$

$\tilde{\alpha}_{n}$ is contained in the center of a 2 -Sylow subgroup of \mathfrak{N}_{m}. For $r=1,2$ and 3 , we denote by $\tilde{H}(n, r)$ the centralizer in \mathscr{A}_{m} of $\tilde{\alpha}_{n}$. In the present paper, we shall prove the following two theorems.

Theorem I. Let $G(n, r)$ be a finite group with the following properties:
(1) $G(n, r)$ has no subgroup of index 2 , and
(2) $G(n, r)$ contains an involution α_{n} in the center of a 2-Sylow subgroup of $G(n, r)$ whose centralizer $C_{G(n, r)}\left(\alpha_{n}\right)$ is isomorphic to $\widetilde{H}(n, r)$.

Then if $r=2$ or $3, G(n, r)$ is isomorphic to $\mathfrak{U}_{4 n+r}$ except for the case $n=1$ and $r=2$ where $G(1,2) \cong \mathfrak{N}_{6}$ or $\operatorname{PSL}(2,7)$.

For the case $r=1$, the author has not obtained the analogous result. But we can prove much weaker result. We note that $\widetilde{H}(n, 1)$ has a unique elementary abelian subgroup \tilde{S} of order $2^{2 n}$ up to conjugacy (cf. Appendix, Proposition 5). Then we have

Theorem II ${ }^{(0)}$. Let $G(n, 1)$ be a finite group containing an involution whose centralizer $H(n, 1)$ is isomorphic to $\widetilde{H}(n, 1)$. Let S be an elementary abelian snbgroup of order $2^{2 n}$ of $H(n, 1)$. Assume that there exists a one-to-one mapping θ from $\widetilde{H}(n, 1) \cup N_{\mathfrak{U}_{m}}(\tilde{S})$ (the set theoretic union in \mathfrak{A}_{m}) onto $H(n, 1) \cup N_{G(n, 1)}(S)$ such that θ induces an isomorphism between $\widetilde{H}(n, 1)\left(\right.$ resp. $\left.N_{\varkappa_{m}}(\tilde{S})\right)$ and $H(n, 1)$ (resp. $N_{G(n, 1)}(S)$).

Then $G(n, 1)$ is isomorphic to $\mathfrak{A}_{4 n}$ or $\mathfrak{H}_{4 n+1}$.
The proof of Theorem I depends on Theorem A of the author's previous paper [9] which was proved only in the case $r=2$ or 3. But we have not obtained such result for the case $r=1$. This is the reason why the stronger condition is necessary for the case $r=1$. However, we note: Theorem II shows that, if we can prove a result in the case $r=1$ similar to Theorem A of [9], we shall be able to at once obtain a characterization of $\mathfrak{R}_{4 n}$ and $\mathfrak{H}_{4 n+1}$ under

