A remark on the cohomology group and the dimension of product spaces

By Yukihiro Kodama

(Received Dec. 8, 1967)

1. In $\S 4$ of the paper [4] several theorems concerning the dimension of product spaces were given. Proofs of all theorems except Theorem 5 depend heavily on Künneth formula which was proved by R.C. O'Neil [7]. However this formula is false. It is known by a counter example given by Gredon (see 2). The purpose of this paper is devoted to correct some of theorems in $\S 4$ of [4] and to prove the related results. However it is not known whether Theorems 6-9 hold or not though they are proved partly in this paper.

Throughout this paper all spaces are Hausdorff and have finite covering dimension and we mean by H^{*} the unrestricted Čech cohomology group.
2. R.C. O'Neil [7] gave the following theorems.
A. Let G be an abelian group. If $X \times Y$ is paracompact, then

$$
H^{n}(X \times Y: G) \cong \sum_{q=0}^{n} H^{q}\left(X: H^{n-q}(Y: G)\right)
$$

B. Let L be a principal ideal domain. If X is compact and Y is paracompact, then there is an exact sequence

$$
\begin{aligned}
0 & \rightarrow \sum_{q=0}^{n} H^{q}(X: L) \bigotimes_{L} H^{n-q}(Y: L) \rightarrow H^{n}(X \times Y: L) \\
& \rightarrow \sum_{q=0}^{n} H^{q+1}(X: L) *_{L} H^{n-q}(Y: L) \rightarrow 0
\end{aligned}
$$

The following example was given by G. Bredon. Let X be a solenoid, so X is a 1-dimensional compact metric space and $H^{1}(X) \cong R$ (=the group of all rational numbers). For $n=2,3, \cdots$, let Y_{n} be a 2 -dimensional finite simplicial polytope such that $H^{2}\left(Y_{n}\right) \cong Z_{n}$ (=the cyclic group of order n). Let Y be a disjoint union of $Y_{n}, n=2,3, \cdots$. Then Y is a 2 -dimensional locally finite polytope and $H^{2}(Y) \cong \prod_{n=2}^{\infty} Z_{n}$. Since X is compact, by Peterson [8: Appendix], we have $H^{3}(X \times Y) \cong \prod_{n=2}^{\infty} H^{3}\left(X \times Y_{n}\right) \cong \prod_{n=2}^{\infty} H^{1}(X) \otimes H^{2}\left(Y_{n}\right)=0$ and $H^{1}\left(X: H^{2}(Y)\right)$ $\cong H^{1}(X) \otimes H^{2}(Y) \neq 0$. Thus, both theorems A and B are false.

