J. Math. Soc. Japan Vol. 21, No. 1, 1969

On 12-manifolds of a special kind

Dedicated to Professor Atuo Komatu on his 60th birthday

By Seiya SASAO

(Received June 21, 1967) (Revised Aug. 1, 1967)

§1. Preliminary.

Let K be a simply connected CW-complex whose cohomology groups are as follows

 $H^{0}(K) = H^{4}(K) = H^{8}(K) = H^{12}(K) \cong Z$ and $H^{i}(K) = 0$ for other *i*.

In this paper we shall consider conditions under which K has a homotopy type of a compact C^{∞} -manifold without boundary. By using Novikov-Browder theory¹⁾ we can partially solve the above problem. By an orientation of K we mean a pair of generators of $H^{*}(K)$ and $H^{12}(K)^{2}$. Since K is homotopy equivalent to a CW-complex $S^4 \cup e^8 \cup e^{12}$ we can associate with K elements $\alpha \in \pi_7(S^4)$ and $\beta \in \pi_{11}(S^4 \cup e^8)$ which are ∂ -images of the generators of $\pi_8(K, S^4)$ and $\pi_{12}(K, S^4 \cup e^8)$ carried by the orientation of K respectively. Here ∂ denotes the boundary homomorphism: $\pi_8(K, S^4) \rightarrow \pi_7(S^4)$ and $\pi_{12}(K, S^4 \cup e^8) \rightarrow \pi_{11}(S^4 \cup e^8)$ respectively. Let $h: S^{\tau} \rightarrow S^{4}$ be the Hopf map and let τ be the element of $\pi_{7}(S^{4})$ such that $2[h] + \tau = [\iota_{4}, \iota_{4}]^{3}$. It is known that $\pi_{7}(S^{4})$ is isomorphic to the direct sum of Z and Z_{12} which are generated by [h] and τ respectively. Hence we can replace α by two integers a, b ($0 \le b \le 11$) such that $\alpha = a[h] + b\tau$. In this paper the case b=0 shall be treated in which cases we can replace β by numerical invariants. Let K_a be the CW-complex which is obtained by attaching e^{s} to S^{4} by a representative of a[h], and let $\varphi_{a}: K_{a} \rightarrow K_{1}$ be a map which is the identity on S^4 and of degree *a* on e^8 . Obviously, $K_1 = P_2(Q)$, the quaternion projective plane. Denote by ξ_1 ($S^{11} \rightarrow P_2(Q) = K_1$) the canonical S^3 bundle. Then let ξ_a be the bundle induced by φ_a , and by the same symbol ξ_a we denote also the total space of this bundle. We consider the group $\pi_{11}(K_a)$ and the diagram

¹⁾ Concerning Browder's theorem and another application, see [3] and [5].

²⁾ We suppose that an orientation of e^4 is fixed.

³⁾ [f] denotes the homotopy class of f, and [,] Whitehead product.