On 12-manifolds of a special kind

Dedicated to Professor Atuo Komatu on his 60th birthday

By Seiya SASAO

(Received June 21, 1967)
(Revised Aug. 1, 1967)

§ 1. Preliminary.

Let K be a simply connected $C W$-complex whose cohomology groups are as follows

$$
H^{0}(K)=H^{4}(K)=H^{8}(K)=H^{12}(K) \cong Z \quad \text { and } \quad H^{i}(K)=0 \quad \text { for other } i
$$

In this paper we shall consider conditions under which K has a homotopy type of a compact C^{∞}-manifold without boundary. By using Novikov-Browder theory ${ }^{1)}$ we can partially solve the above problem. By an orientation of K we mean a pair of generators of $H^{8}(K)$ and $H^{12}(K)^{2)}$. Since K is homotopy equivalent to a $C W$-complex $S^{4} \cup e^{8} \cup e^{12}$ we can associate with K elements $\alpha \in \pi_{7}\left(S^{4}\right)$ and $\beta \in \pi_{11}\left(S^{4} \cup e^{8}\right)$ which are ∂-images of the generators of $\pi_{8}\left(K, S^{4}\right)$ and $\pi_{12}\left(K, S^{4} \cup e^{8}\right)$ carried by the orientation of K respectively. Here ∂ denotes the boundary homomorphism: $\pi_{8}\left(K, S^{4}\right) \rightarrow \pi_{7}\left(S^{4}\right)$ and $\pi_{12}\left(K, S^{4} \cup e^{8}\right) \rightarrow \pi_{11}\left(S^{4} \cup e^{8}\right)$ respectively. Let $h: S^{7} \rightarrow S^{4}$ be the Hopf map and let τ be the element of $\pi_{7}\left(S^{4}\right)$ such that $2[h]+\tau=\left[\epsilon_{4}, c_{4}\right]^{3)}$. It is known that $\pi_{7}\left(S^{4}\right)$ is isomorphic to the direct sum of Z and Z_{12} which are generated by [h] and τ respectively. Hence we can replace α by two integers $a, b(0 \leqq b \leqq 11)$ such that $\alpha=a[h]+b \tau$. In this paper the case $b=0$ shall be treated in which caser. we can replace β by numerical invariants. Let K_{a} be the $C W$-complex which is obtained by attaching e^{8} to S^{4} by a representative of $a[h]$, and let $\varphi_{a}: K_{a} \rightarrow K_{1}$ be a map which is the identity on S^{4} and of degree a on e^{8}. Obviously, $K_{1}=P_{2}(Q)$, the quaternion projective plane. Denote by $\xi_{1}\left(S^{11} \rightarrow P_{2}(Q)=K_{1}\right)$ the canonical S^{3} bundle. Then let ξ_{a} be the bundle induced by φ_{a}, and by the same symbol ξ_{a} we denote also the total space of this bundle. We consider the group $\pi_{11}\left(K_{a}\right)$ and the diagram

1) Concerning Browder's theorem and another application, see [3] and [5].
2) We suppose that an orientation of e^{4} is fixed.
3) $[f]$ denotes the homotopy class of f, and $[$,$] Whitehead product.$
