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\S 0. Introduction.

The purpose of this paper is to investigate the groups of the pseudo-
diffeotopy classes of diffeomorphisms of manifolds, which are total spaces of
disk bundles over spheres or sphere bundles over spheres. The results are
applied to the diffeomorphism classification of simply-connected manifolds,
which are homological tori.

Let Diff $M$ denote the group of orientation preserving diffeomorphisms of
an oriented manifold $M$ and let $\tilde{\pi}_{0}$ (Diff $M$) denote the group of pseudo-diffeo-
topy classes of Diff $M$. Let $\mathcal{E}_{f}$ and $\mathscr{Z}_{f}$ be the $D^{q+1}$ bundle over $S^{p}$ and $S^{q}$

bundle over $S^{p}$ with characteristic map $f:S^{p- 1}\rightarrow SO_{q+1}$ . In \S 1, we study $\tilde{\pi}_{\alpha}$

(Diff $\mathcal{E}_{f}$). In case where $\mathcal{E}_{f}=S^{p}\times D^{q+1}$ , we prove the following theorem.
THEOREM 1.5. Let $p<2q-1$ . The order of $\tilde{\pi}_{0}$ (Diff $S^{p}\times D^{q+1}$) is equal to

the order of the direct sum group $\pi_{p}(SO_{q+1})\oplus Z_{2}$ .
The concordance classes of (framed) embeddings of $S^{q}$ in $gr_{f}$ are discussed

in \S 2. The set of framed embedding classes are related to the pairing

$F;\pi_{p-1}(SO_{q})\times\pi_{q}(S^{p})\rightarrow\pi_{q-1}(SO_{p})$

introduced by Wall [14]. In \S 3, we define a map $C$ from $\tilde{\pi}_{0}$ (Diff $S^{p}\times S^{q}$) to
$\Theta^{p+q+1}$ and study its properties. Making use of the results of \S $1\sim 3$ , the study
of $\tilde{\pi}_{0}$ (Diff $\mathcal{G}_{f}$) is carried out in \S 4. In case $g_{f}=S^{p}\times S^{q}$ , we obtain the follow-
ing theorem.

THEOREM 4.17. For $p<q<2p-4$, the order of $\tilde{\pi}_{0}$ (Diff $S^{p}\times S^{q}$) is equal to
the order of the direct sum group

$Z_{2}\oplus\pi_{p}(SO_{q+1})\oplus\pi_{q}(SO_{p+1})\oplus\Theta^{p+q+1}$ .
In \S 5, as an application of our results in \S 4, we deal with the classification

of manifolds which satisfy the conditions,

$\left\{\begin{array}{lllll}cM.\cdot losed & andsimp1y & & connected & \\H_{i}(M)=\{0Z & for & 0, & qp,+1, & p+q+1\\\pi_{p}(SO_{q+1})=0 & otherwise & & & \\<p<q2p-4\cdot & & & & \end{array}\right\}$ $(*)$


