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\S 1. Introduction.

The purpose of this paper is to characterize the alternating groups of
degrees twelve, thirteen, fourteen and fifteen by the structure of the centralizer
of an element of order 2 contained in the center of their Sylow 2-subgroups.
Let $A_{n}$ be the alternating group of degree $n$ . Let a denote the element of
order 2 in $A_{n}(n\geqq 12)$ which has a cycle decomposition $(1, 2)(3,4)(5,6)(7,8)$

$(9,10)(11,12)$ . We regard $A_{12}\subset A_{13}\subset A_{14}\subset A_{15}$ via the natural imbedding.
Put $\hat{H}_{1}=C_{A_{12}}(\hat{\alpha})=C_{A_{13}}(\hat{\alpha}),\hat{H}_{2}=C_{A_{14}}(\hat{\alpha})$ and $\hat{H}_{3}=C_{A_{15}}(\hat{\alpha})$ . The characterization
of $A_{12},$ $A_{13},$ $A_{14}$ and $A_{15}$ is given by the following theorem.

THEOREM. Let $G_{i}$ be a finite group with the following two properties:
(1) $G_{i}$ has no subgroup of index 2, and
(2) $G_{i}$ contains an involution $\alpha$ which is contained in the center of a Sylow

2-subgroup of $G_{i}$ such that the centralizer $C_{G_{i}}(\alpha)$ is isomorphic to $\hat{H}_{i}$ .
Then (i) $G_{1}\cong A_{12}$ or $A_{13}$ or

(ii) $G_{1}$ has precisely four conjugacy classes of involutions
and

(iii) $G_{2}\cong A_{14}$ ,

(iv) $G_{3}\cong A_{15}$ .
REMARK. The third case of $G_{1}$ is non-empty. For example the group

$PS_{p_{6}}(2)$ , the projective symplectic group of six variables over the field of 2 ele-
ments, satisfies our conditions (1), (2) and has precisely four conjugacy classes
of involutions. We will study this case in a subsequent paper.

In the course of our proof we show that a group $G_{i}$ with properties (1)
and (2) posesses precisely three or four conjugacy classes of involutions and
determines the structure of the centralizers of involutions which are not con-
jugate to $\alpha$ . The identification of G. with the alternating group is then
accomplished by using a theorem of Kondo [11] which is a generalization of
Wong’s theorem [14] on $A_{8}$ .
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