A characterization of the alternating groups of degrees 12, 13, 14, 15

By Hiroyoshi YAMAKI

(Received April 9, 1968)

§ 1. Introduction.

The purpose of this paper is to characterize the alternating groups of degrees twelve, thirteen, fourteen and fifteen by the structure of the centralizer of an element of order 2 contained in the center of their Sylow 2-subgroups. Let A_n be the alternating group of degree n. Let $\hat{\alpha}$ denote the element of order 2 in A_n ($n \ge 12$) which has a cycle decomposition (1, 2)(3, 4)(5, 6)(7, 8) (9, 10)(11, 12). We regard $A_{12} \subset A_{13} \subset A_{14} \subset A_{15}$ via the natural imbedding. Put $\hat{H}_1 = C_{A_{12}}(\hat{\alpha}) = C_{A_{13}}(\hat{\alpha})$, $\hat{H}_2 = C_{A_{14}}(\hat{\alpha})$ and $\hat{H}_3 = C_{A_{15}}(\hat{\alpha})$. The characterization of A_{12} , A_{13} , A_{14} and A_{15} is given by the following theorem.

Theorem. Let G_i be a finite group with the following two properties:

- (1) G_i has no subgroup of index 2, and
- (2) G_i contains an involution α which is contained in the center of a Sylow 2-subgroup of G_i such that the centralizer $C_{G_i}(\alpha)$ is isomorphic to \hat{H}_i .
 - Then (i) $G_1 \cong A_{12}$ or A_{13} or
 - (ii) G_1 has precisely four conjugacy classes of involutions and
 - (iii) $G_2 \cong A_{14}$,
 - (iv) $G_3 \cong A_{15}$.

REMARK. The third case of G_1 is non-empty. For example the group $PS_{p_6}(2)$, the projective symplectic group of six variables over the field of 2 elements, satisfies our conditions (1), (2) and has precisely four conjugacy classes of involutions. We will study this case in a subsequent paper.

In the course of our proof we show that a group G_i with properties (1) and (2) possesses precisely three or four conjugacy classes of involutions and determines the structure of the centralizers of involutions which are not conjugate to α . The identification of G_i with the alternating group is then accomplished by using a theorem of Kondo [11] which is a generalization of Wong's theorem [14] on A_8 .

The author is greatly indebted to Dr. T. Kondo who suggested and supervised this research.