An investigation on degrees of unsolvability

Dedicated to Professor Motokiti Kondô on his sixtieth birthday anniversary

By Ken HIROSE

(Received Nov. 29, 1965)

§ 0. Introduction.

By *degree*, we mean the degree of recursive unsolvability as defined by S.C. Kleene and E.L. Post in [2]. For notations not explained here, see [1], [2] and [5].

For each degree d, let R_d denote the set of all degrees greater than for equal to d, recursively enumerable in d and less than or equal to d' (the completion of d).

R. M. Friedberg has shown that degree d' does not have a unique preimage in R_d . G. E. Sacks [4] proved that if $a \in R_{b'}$, then there exists a degree c such that $c \in R_b$ and c' = a.

The main result of the present paper is that if $a \in R_{b'}$, then for any positive integer n, there exist independent degrees c_1, c_2, \dots, c_n such that $c_i \in R_b$ and $c_i' = a$ for $i = 1, 2, \dots, n$. Thus the degrees which lie between b' and b'' and are recursively enumerable in b' can be viewed as the completions of the independent degrees which lie between b and b' and are recursively enumerable in b. This shall be proved as a corollary of the following 'main theorem'. The methods used here are those developed in [2], [3] and [4].

We shall denote by $a \upharpoonright b$ the relation between degrees a and b:a is recursively enumerable in b.

MAIN THEOREM. Let a, b and c be degrees such that:

- (I) $a \not\leq b$
- (II) $a \leq b' \leq c$
- (III) $c \upharpoonright b'$

Then for any positive integer n, there exist degrees d_0, d_1, \dots, d_{n-1} such that:

- (i) $b \leq d_i$ for $i = 0, 1, \dots, n-1$,
- (ii) $d_i \upharpoonright b$ for $i = 0, 1, \dots, n-1$,
- (iii) $d_0, d_1, \cdots, d_{n-1}$ are independent,
- (iv) $a \not\leq d_i$ for $i = 0, 1, \dots, n-1$,
- (v) $d_i = c$ for $i = 0, 1, \dots, n-1$.