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\S 0. Introduction.

By degree, we mean the degree of recursive unsolvability as defined by
S. C. Kleene and E. L. Post in [2]. For notations not explained here, see [1],

[2] and [5].

For each degree $d$ , let $R_{d}$ denote the set of all degrees greater than $\int^{1or}$

equal to $d$, recursively enumerable in $d$ and less than or equal to $d^{\prime}$ (the com-
pletion of $d$).

R. M. Friedberg has shown that degree $d^{\prime}$ does not have a unique pre-
image in $R_{d}$ . G. E. Sacks [4] proved that if $a\in R_{b},$ , then there exists a degree
$c$ such that $c\in R_{b}$ and $C^{\prime}=a$ .

The main result of the present paper is that if $a\in R_{b},$ , then for any posi-
tive integer $n$ , there exist independent degrees $c_{1},$ $c_{2},$ $\cdots$ , $c_{n}$ such that $c_{i}\in R_{b}$

and $c_{i}^{\prime}=a$ for $i=1,2$, , $n$ . Thus the degrees which lie between $b^{f}$ and $b^{\prime\prime}$

and are recursively enumerable in $b^{\prime}$ can be viewed as the completions of the
independent degrees which lie between $b$ and $b^{\prime}$ and are recursively enumer-
able in $b$ . This shall be proved as a corollary of the following ‘ main theorem ’

The methods used here are those developed in [2], [3] and [4].

We shall denote by $a^{t}\triangleright b$ the relation between degrees $a$ and $b:$ $a$ is recur-
sively enumerable in $b$ .

MAIN THEOREM. Let $a,$
$b$ and $c$ be degrees such that:

(I) $a\not\leqq b$

(II) $a\leqq b^{\prime}\leqq c$

(III) $c\triangleright b^{\prime}$

Then for any positive integer $n$ , there exist degrees $d_{0},$ $d_{1},$ $\cdots$ , $d_{n-1}$ such that:
(i) $b\leqq d_{i}$ for $i=0,1,$ $\cdots$ , $n-1$ ,

(ii) $d_{i}\triangleright b$ for $i=0,1,$ $\cdots$ , $n-1$ ,

(iii) $d_{0},$ $d_{1},$ $\cdots$ , $d_{n-1}$ are independent,
(iv) $a\not\equiv d_{i}$ for $i=0,1,$ $\cdots$ , $n-1$ ,

(v) $d’=c$ for $i=0,1,$ $\cdots$ , $n-1$ .


