An investigation on degrees of unsolvability

Dedicated to Professor Motokiti Kondô on his sixtieth birthday anniversary

By Ken Hirose

(Received Nov. 29, 1965)

§ 0. Introduction.

By degree, we mean the degree of recursive unsolvability as defined by S. C. Kleene and E. L. Post in [2]. For notations not explained here, see [1], [2] and [5].

For each degree \boldsymbol{d}, let $R_{\boldsymbol{d}}$ denote the set of all degrees greater than for equal to \boldsymbol{d}, recursively enumerable in \boldsymbol{d} and less than or equal to \boldsymbol{d}^{\prime} (the completion of \boldsymbol{d}).
R. M. Friedberg has shown that degree \boldsymbol{d}^{\prime} does not have a unique preimage in $R_{\boldsymbol{d}}$. G. E. Sacks [4] proved that if $\boldsymbol{a} \in R_{\boldsymbol{b}^{\prime}}$, then there exists a degree \boldsymbol{c} such that $\boldsymbol{c} \in R_{b}$ and $\boldsymbol{c}^{\prime}=\boldsymbol{a}$.

The main result of the present paper is that if $\boldsymbol{a} \in R_{b^{\prime}}$, then for any positive integer n, there exist independent degrees $\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \cdots, \boldsymbol{c}_{n}$ such that $\boldsymbol{c}_{i} \in R_{b}$ and $\boldsymbol{c}_{i}^{\prime}=\boldsymbol{a}$ for $i=1,2, \cdots, n$. Thus the degrees which lie between \boldsymbol{b}^{\prime} and $\boldsymbol{b}^{\prime \prime}$ and are recursively enumerable in \boldsymbol{b}^{\prime} can be viewed as the completions of the independent degrees which lie between \boldsymbol{b} and \boldsymbol{b}^{\prime} and are recursively enumerable in \boldsymbol{b}. This shall be proved as a corollary of the following 'main theorem'. The methods used here are those developed in [2], [3] and [4].

We shall denote by $\boldsymbol{a} \uparrow \boldsymbol{b}$ the relation between degrees \boldsymbol{a} and $\boldsymbol{b}: \boldsymbol{a}$ is recursively enumerable in \boldsymbol{b}.

Main Theorem. Let $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c} be degrees such that:
(I) \boldsymbol{a} 事 \boldsymbol{b}
(II) $\boldsymbol{a} \leqq \boldsymbol{b}^{\prime} \leqq \boldsymbol{c}$
(III) $\boldsymbol{c} \uparrow \boldsymbol{b}^{\prime}$

Then for any positive integer n, there exist degrees $\boldsymbol{d}_{0}, \boldsymbol{d}_{1}, \cdots, \boldsymbol{d}_{n-1}$ such that:
(i) $\quad \boldsymbol{b} \leqq \boldsymbol{d}_{i} \quad$ for $i=0,1, \cdots, n-1$,
(ii) $\boldsymbol{d}_{i} \uparrow \boldsymbol{b} \quad$ for $i=0,1, \cdots, n-1$,
(iii) $\boldsymbol{d}_{0}, \boldsymbol{d}_{1}, \cdots, \boldsymbol{d}_{n-1}$ are independent,
(iv) $\quad \boldsymbol{a}$ 丰 $\boldsymbol{d}_{i} \quad$ for $i=0,1, \cdots, n-1$,
(v) $\quad \boldsymbol{d}_{i}^{\prime}=\boldsymbol{c} \quad$ for $i=0,1, \cdots, n-1$.

