On the uniqueness of solutions of the global Cauchy problem for a Kowalevskaja system

By Takesi YAMANAKA

(Received Aug. 1, 1967) (Revised May 10, 1968)

§1. Introduction.

Consider a Kowalevskaja type system of partial differential equations

$$\frac{\partial u(t, x)}{\partial t} = L_t u \equiv \sum_{k=1}^n A_k(t, x) \frac{\partial u}{\partial x_k} + B(t, x)u, \qquad (1.1)$$

where u(t, x) is an *m* dimensional unknown vector function of $t \in \mathbb{R}^{1}$ and $x = (x_{1}, \dots, x_{n}) \in \mathbb{R}^{n}$ and $A_{k}(t, x)$ $(k = 1, \dots, n)$ and B(t, x) are $m \times m$ matrices. We assume that the components of A_{k} and B are functions of t and x which are analytic in x.

In order to state the hypotheses to be imposed on A_k and B more exactly, however, we need to introduce some notations. For an n dimensional vector $x = (x_1, \dots, x_n)$ we put $||x|| = \max_{1 \le i \le n} |x_i|$ and for a positive number β we denote by Ω_β the strip domain in the complex n dimensional space C^n defined by

$$\mathcal{Q}_{\beta} = \{x + iy \mid x, y \in \mathbf{R}^n \text{ and } \|y\| < \beta\}.$$

We assume that the components of the matrices A_k and B are complex valued functions of $(t, z) \in [0, T) \times \Omega_{\beta}$ for some T > 0 and $\beta > 0$ which are regular analytic in z for any fixed t.

The purpose of this paper is to prove the following

THEOREM. Let T and β be any positive numbers. Suppose that the components of A_k are bounded in $[0, T) \times \Omega_{\beta}$ and uniformly continuous in (t, z)there and that the components $b_{ij}(t, z)$ of B satisfy in $[0, T) \times \Omega_{\beta}$ the inequalities

$$|b_{ij}(t, x+iy)| \leq B_0 e^{a \|\boldsymbol{x}\|} \tag{1.2}$$

for some positive constants B_0 , a and $e^{-a||x||}b_{ij}(t, z)$ are uniformly continuous in (t, z) there. Let $v_i(t, x)$ $(i = 1, \dots, n)$ be functions of $(t, x) \in (0, T) \times \mathbb{R}^n$ which are measurable in x for any t and satisfy

$$|v_i(t, x)| \le C \exp(ce^{a ||x||})$$
 $(i = 1, \dots, n)$ (1.3)