On the uniqueness of solutions of the global Cauchy problem for a Kowalevskaja system

By Takesi YAmANAKA

(Received Aug. 1, 1967)
(Revised May 10, 1968)

§ 1. Introduction.

Consider a Kowalevskaja type system of partial differential equations

$$
\begin{equation*}
\frac{\partial u(t, x)}{\partial t}=L_{t} u \equiv \sum_{k=1}^{n} A_{k}(t, x) \frac{\partial u}{\partial x_{k}}+B(t, x) u \tag{1.1}
\end{equation*}
$$

where $u(t, x)$ is an m dimensional unknown vector function of $t \in \boldsymbol{R}^{1}$ and $x=\left(x_{1}, \cdots, x_{n}\right) \in \boldsymbol{R}^{n}$ and $A_{k}(t, x)(k=1, \cdots, n)$ and $B(t, x)$ are $m \times m$ matrices. We assume that the components of A_{k} and B are functions of t and x which are analytic in x.

In order to state the hypotheses to be imposed on A_{k} and B more exactly, however, we need to introduce some notations. For an n dimensional vector $x=\left(x_{1}, \cdots, x_{n}\right)$ we put $\|x\|=\max _{1 \leqq i \leqq n}\left|x_{i}\right|$ and for a positive number β we denote by Ω_{β} the strip domain in the complex n dimensional space C^{n} defined by

$$
\Omega_{\beta}=\left\{x+i y \mid x, y \in \boldsymbol{R}^{n} \text { and }\|y\|<\beta\right\}
$$

We assume that the components of the matrices A_{k} and B are complex valued functions of $(t, z) \in[0, T) \times \Omega_{\beta}$ for some $T>0$ and $\beta>0$ which are regular analytic in z for any fixed t.

The purpose of this paper is to prove the following
Theorem. Let T and β be any positive numbers. Suppose that the components of A_{k} are bounded in $[0, T) \times \Omega_{\beta}$ and uniformly continuous in (t, z) there and that the components $b_{i j}(t, z)$ of B satisfy in $[0, T) \times \Omega_{\beta}$ the inequalities

$$
\begin{equation*}
\left|b_{i j}(t, x+i y)\right| \leqq B_{0} e^{a\|x\|} \tag{1.2}
\end{equation*}
$$

for some positive constants B_{0}, a and $e^{-a\|x\|} b_{i j}(t, z)$ are uniformly continuous in (t, z) there. Let $v_{i}(t, x)(i=1, \cdots, n)$ be functions of $(t, x) \in(0, T) \times \boldsymbol{R}^{n}$ which are measurable in x for any t and satisfy

$$
\begin{equation*}
\left|v_{i}(t, x)\right| \leqq C \exp \left(c e^{a\|x\|}\right) \quad(i=1, \cdots, n) \tag{1.3}
\end{equation*}
$$

