
J. Math. Soc. Japan
Vol. 20, No. 3, 1968

On provably recursive functions and ordinal
recursive functions*

By Akiko KINO

(Received Oct. 24, 1966)

A recursive function $\phi(x)$ is defined to be $U(\mu yT(e, x, y))$ , if $\forall x\exists yT(e, x, y)$ ,
where $U$ and $T$ are primitive recursive and $e$ is an integer; but nothing is
said about the theory in which the predicate $\forall x\exists yT(e, x, y)$ is provable. The
investigation of reasonable theories $9i$ in which provable recursiveness in $q$ is
defined by $\mathfrak{j}-q\forall x\exists yT(e, x, y)$ forms an interesting branch of recursive function
theory, and the functions provably recursive in such $q$ constitute a not un-
natural subclass of the class of computable functions. We will give a charac-
terization of provable recursiveness for certain theories.

Let $q$ be the theory of natural numbers or a subtheory of analysis. A
recursive function $\phi(x)$ is called “ provably recursive in $EZ$ , if $-g\forall x\exists yT(e, x, y)$ ,

where $e$ is a Godel number of $\phi$ . $Let\prec be$ a primitive recursive well-ordering

of natural numbers with $7n^{\prime}\prec 0$ for every $n$ . We $call\prec a$ provable primitive
recursive well-ordering in $q$, if the sentence $\prec is$ a well-ordering” is provable
in $q$ (cf. \S 3). A number-theoretic function $\phi$ is called “ ordinal recursive with
respect to $\prec‘‘$ ($\prec$-recursive), if it is defined by $t$ ‘ defining equations “ of primi-
tive recursive form and by transfinite induction with respect to $\prec$ . (For the
precise definition, cf. $[8a]$ and \S 2.)

In [11], Takeuti defined $GLC$, a Gentzen-style simple type theory contain-
ing t-variables of the first order and $f$-variables with finitely many argument-
places and stated his fundamental conjecture (FC) about $GLC$ ; (that Gentzen’s
Hauptsatz for $LK$, that is the cut elimination theorem, holds in $GLC$ as well.)
Takeuti proved that FC holds for many subsystems of $GLC$ by using transfinite
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