On the generators of non-negative contraction semi-groups in Banach lattices

By Ken-iti SATO*

(Received Sept. 1, 1967)

1. Introduction. Let \mathfrak{B} be a Banach lattice. That is, \mathfrak{B} is a Banach space with the real scalar field \mathbf{R} and a lattice at the same time and the both structures are related by the axioms: (i) If $f \geq g$, then $f+h \geq g+h$; (ii) If $f \geq g$ and $a \in \mathbf{R}^+$ (the set of non-negative real numbers), then $af \geq ag$; (iii) If $f \geq g$, then $-f \leq -g$; (iv) If $|f| \geq |g|$, then $||f|| \geq ||g||$. We use the notations

$$f \lor g = \sup \{f, g\}, \quad f \land g = \inf \{f, g\},$$

 $|f| = f \lor (-f), \quad f^+ = f \lor 0, \quad f^- = -(f \land 0).$

An element $f \ge 0$ is called non-negative and the cone of non-negative elements is denoted by \mathfrak{B}^+ . We call a family of linear operators $\{T_t; t \ge 0\}$ from \mathfrak{B} into \mathfrak{B} an s-continuous non-negative contraction semi-group if they satisfy (i) $T_t T_s = T_{t+s}$ and $T_0 = I$ (identity); (ii) T_t is strongly continuous, i. e., s- $\lim_{t\to 0^+} T_t f = f^{1)}$ for each $f \in \mathfrak{B}$; (iii) T_t is a contraction, i. e., $\|T_t\| \le 1$; (iv) T_t is non-negative in the sense that T_t maps \mathfrak{B}^+ into itself. R. S. Phillips [7] characterized the generators of such semi-groups, introducing the notion of dispersiveness. He used a special type of Lumer's semi-inner product, that is, a mapping $s(f,g)^{\mathfrak{D}}$ from $\mathfrak{B} \times \mathfrak{B}$ into R which satisfies s(f,g+h)=s(f,g)+s(f,h), s(f,ag)=as(f,g), $|s(f,g)| \le ||f|| ||g||$, $s(f,f)=||f||^2$, $s(f^+,f)=||f^+||^2$ and carries $\mathfrak{B}^+ \times \mathfrak{B}^+$ into R^+ . He called an operator A dispersive if $s(f^+,Af) \le 0$ for each $f \in \mathfrak{D}(A)^{\mathfrak{S}}$ and proved the following theorem: A is the generator of an s-continuous semi-group if and only if A is linear dispersive, $\mathfrak{D}(A)$ is dense and $\mathfrak{R}(\lambda-A)=\mathfrak{B}$ for some $\lambda>0$. M. Hasegawa [3] noticed that the functional $\tau(f,g)$ defined by

(1.1)
$$\tau(f,g) = \lim_{\varepsilon \to 0+} \varepsilon^{-1}(\|f + \varepsilon g\| - \|f\|)$$

is useful for the characterization of the same generators. $||f||\tau(f,g)$ shares some properties with s(f,g). Making use of $\tau'(f,g)$ defined by

^{*} The partial support of the Sakkokai Foundation is gratefully acknowledged.

¹⁾ s-lim denotes limit in the strong convergence.

²⁾ The notation of Lumer and Phillips is [g, f] = s(f, g).

³⁾ The domain of A is denoted by $\mathfrak{D}(A)$ and the range by $\mathfrak{R}(A)$.