On the pre-closedness of the potential operator

Dedicated to Professor Iyanaga on his 60th birthday

By Kôsaku Yosida, Takeshi Watanabe and Hiroshi Tanaka

(Received Oct. 30, 1967)
§ 1. Introduction. Let X be a separable, locally compact, non-compact Hausdorff space, and B be the completion with respect to the maximum norm of the space $C_{0}(X)$ of real-valued continuous functions with compact supports defined in X. G. A. Hunt [1] introduced the notion of the potential operator V as a positive linear operator on $D(V) \cong B$ with $D(V) \supseteqq C_{0}(X)$ into B satisfying the "principle of positive maximum" ${ }^{1)}$:
(1) For any $f \in C_{0}(X)$, we have $\sup _{f(x)>0}(V f)(x)=\sup _{x \in X}(V f)(x)$ if the latter supremum is positive.

The fundamental result of Hunt reads as follows:
Theorem. Let V satisfy (1) and the condition that
(2) $V \cdot C_{0}(X)$ is dense in B.

Then, there exists a uniquely determined semi-group $\left\{T_{t} ; t \geqq 0\right\}$ of class $\left(C_{0}\right)$ of positive contraction linear operators T_{t} on B into B such that
(3) $A V f=-f, f \in C_{0}(X)$, for the infinitesimal generator A of T_{t}.

An operator-theoretical proof of this theorem was given in K. Yosida [2], showing that the resolvent $J_{\lambda}=(\lambda I-A)^{-1}, \lambda>0$, of A is the continuous extension to the whole space B of the operator \hat{J}_{λ} defined by

$$
\begin{equation*}
\lambda V f+f \rightarrow V f, \quad f \in C_{0}(X), \tag{4}
\end{equation*}
$$

with an additional remark that
(5) V^{-1} exists and $V^{-1}=-A$ if and only if V is closed.

The purpose of the present note is to show that the restriction $V \mid C_{0}(X)$ of V to $C_{0}(X)$ is pre-closed so that its smallest closed extention, which shall be

[^0] It is also proved on the same page that (1)' is a consequence of (1) and (2).

[^0]: 1) This principle, sometimes called as the "weak principle of positive maximum", is proved on page 220 of [2] in the course of the proof of:
 (1)' For any $f \in C_{0}(X)$, the condition $(V f)\left(x_{0}\right)=\sup _{x \in X}(V f)(x)$ implies $f\left(x_{0}\right) \geqq 0$.
