On the pre-closedness of the potential operator

Dedicated to Professor Iyanaga on his 60th birthday

By Kôsaku YOSIDA, Takeshi WATANABE and Hiroshi TANAKA

(Received Oct. 30, 1967)

§1. Introduction. Let X be a separable, locally compact, non-compact Hausdorff space, and B be the completion with respect to the maximum norm of the space $C_0(X)$ of real-valued continuous functions with compact supports defined in X. G. A. Hunt [1] introduced the notion of the potential operator V as a positive linear operator on $D(V) \subseteq B$ with $D(V) \supseteq C_0(X)$ into B satisfying the "principle of positive maximum"¹⁾:

(1) For any $f \in C_0(X)$, we have $\sup_{f(x)>0} (Vf)(x) = \sup_{x \in X} (Vf)(x)$ if the latter supremum is positive.

The fundamental result of Hunt reads as follows:

THEOREM. Let V satisfy (1) and the condition that

(2) $V \cdot C_0(X)$ is dense in B.

Then, there exists a uniquely determined semi-group $\{T_t; t \ge 0\}$ of class (C_0) of positive contraction linear operators T_t on B into B such that

(3) AVf = -f, $f \in C_0(X)$, for the infinitesimal generator A of T_t .

An operator-theoretical proof of this theorem was given in K. Yosida [2], showing that the resolvent $J_{\lambda} = (\lambda I - A)^{-1}$, $\lambda > 0$, of A is the continuous extension to the whole space B of the operator \hat{J}_{λ} defined by

(4) $\lambda V f + f \rightarrow V f, \quad f \in C_0(X),$

with an additional remark that

(5) V^{-1} exists and $V^{-1} = -A$ if and only if V is closed.

The purpose of the present note is to show that the restriction $V|C_0(X)$ of V to $C_0(X)$ is pre-closed so that its smallest closed extension, which shall be

(1)' For any $f \in C_0(X)$, the condition $(Vf)(x_0) = \sup_{x \in X} (Vf)(x)$ implies $f(x_0) \ge 0$.

¹⁾ This principle, sometimes called as the "weak principle of positive maximum", is proved on page 220 of [2] in the course of the proof of:

It is also proved on the same page that (1)' is a consequence of (1) and (2).