A characterization of the simple groups $\operatorname{PSL}(2, q)$

Dedicated to Professor Shôkichi Iyanaga

By Michio Suzuki ${ }^{1)}$

(Received June 14, 1967)

1. The purpose of this paper is to prove the following theorem.

THEOREM A. Let G be a finite group which satisfies the following two conditions:
(i) G is semi-simple, and
(ii) if X is a cyclic subgroup of even order and if Y is a non-identity subgroup of G, then

$$
X \supseteq Y \text { implies } \quad N_{G}(X) \supseteqq N_{G}(Y) \text {. }
$$

Then G is isomorphic to either $\operatorname{PGL}(2, q)$ or $\operatorname{PSL}(2, q)$ for some prime power $q>3$.

Notation and terminology are standard. PGL $(2, q)$ is the factor group of the group of all 2×2 non-singular matrices over the finite field of q elements. by its center. The group $\operatorname{PSL}(2, q)$ is similarly defined by replacing nonsingular by unimodular. If $q>3 \operatorname{PSL}(2, q)$ is a simple group. See [3]. If q is even, $\operatorname{PGL}(2, q)$ coincides with $\operatorname{PSL}(2, q)$. Otherwise $\operatorname{PSL}(2, q)$ is the only proper normal subgroup of $\operatorname{PGL}(2, q)$. Thus, both groups are semi-simple, i.e. they contain no proper solvable normal subgroups. $N_{G}(X)$ is the normalizer and $C_{G}(X)$ is the centralizer of a subset X in G.

It is not hard to show that the groups $\operatorname{PGL}(2, q)$ and $\operatorname{PSL}(2, q)$ satisfy the condition (ii). Thus the converse of Theorem A holds.

In [1], Brauer, Wall and the author studied a finite group of even order which satisfies the property that two distinct maximal cyclic subgroups of even order have a trivial intersection. Such a group satisfies the condition (ii). So Theorem A may be considered as a generalization of the result of [1].

In the proof of Theorem A we use the structure theorems of finite groups. in which the centralizers of elements of order 2 are always nilpotent. Re-

[^0]
[^0]: 1) Research done while the author held an associate membership of the Center for Advanced Study at the University of Illinois, and supported in part by a grant from the National Science Foundation. The author thanks for helpful comments from T. K.. and J. W.
