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\S 0. Introduction.

The Picard number of an algebraic variety is closely related to the arith-
metical properties of the algebraic variety. The well-known Lefschetz-Hodge
theorem asserts that, in the case of algebraic surfaces, 2-cycles on an algebraic
surface are algebraic if and only if the periods of all the holomorphic 2-forms
are zero (cf. Lefschetz [5], Kodaira-Spencer [4]). However, the determination
of values of the periods on algebraic surfaces are extremely difficult. In
this paper we examine some properties of the periods of holomorphic 2-forms
on the algebraic surface $S=S_{n}(a^{(1)}, a^{(2)})$ in the three dimensional projective
space $P_{3}(C)$ defined by

$\uparrow(0.1)$ $\prod_{f=1}^{n}(x_{3}-a_{j^{(1)}}x_{2})=\prod_{j=1}^{n}(x_{1}-a_{j^{(2)}}x_{0})$ ,

where $(x_{0}, x_{1}, x_{2}, x_{3})$ are homogenous co-ordinates of $P_{s}(C)$ , and study the
Picard number of this surface.

We shall summarize our results briefly. The first three sections are pre-
Aiminaries. We calculate the Picard number in the final section. In the first
section we show the following properties of our surface $S$ defined by (0.1):

Let $C_{i}$ be the (plane) algebraic curve defined by

\langle 0.2) $u_{2}^{n}=\prod_{j=1}^{n}(u_{1}-a_{j}^{(i)}u_{0})$ $(i=1,2)$ ,

where $(u_{0}, u_{1}, u_{2})$ are homogenous co-ordinates of projective plane $P_{2}(C)$ , and
let $G_{n}=\{\sigma_{n}^{i} : i=1,2, \cdots , n\}$ be the automorphism group of $C_{i}$ defined by

$\sigma_{n}(u_{0}, u_{1}, u_{2})=(u_{0}, u_{1}, \zeta_{n}u_{2})$ , $\zeta_{n}=\exp(\frac{2\pi\prime-1}{n})$ .

Then we prove that $S$ is birationally equivalent to the quotient surface
$(C_{1}\times C_{2})/G_{n}$ (Lemma 1.1).

Let $\rho(S)$ be the Picard number of $S$ and let $\rho^{(c_{n})}(C_{1}\chi C_{2})$ be the number of
homologically independent algebraic curves on $C_{1}\times C_{2}$ whose homology classes
are invariant under the operations of $G_{n}$ . Then we obtain from Lemma 1.1


