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The purpose of the present paper is to prove the following
THEOREM. $LetS\subseteqq RbeintegraldomainswithfieldsofquotientsQ(S)\subseteqq Q(R)$ .

Assume that for each element $r$ of $R$ , there is a natural number $n$ (depending
on r) such that $r^{n}$ is in $Q(S)$ . Then either (1) $Q(R)$ is purely inseparable over
$Q(S)$ or (2) $R$ and $S$ are algebraic over a finite field.

The proof is given as follows. Assume that $Q(R)$ is not purely inseparable
over $Q(S)$ . Then there is an element $a$ of $R$ which is not in $Q(S)$ and which
is separable over $Q(S)$ . We fix this element $a$ . Let $a=a_{1},$ $a_{2}$ , $\cdot$ .. , $a_{c}$ be all of
the conjugates of $a$ over $Q(S)$ in an algebraically closed field $K$ containing $Q(R)$ .
If $S$ contains only a finite number of elements, then (2) holds good obviously.
Therefore we assume that $S$ contains infinitely many elements. For each ele-
ment $s$ of $S$ , there is a natural number $n(s)$ such that $(a+s)^{n(S)}\in Q(S)$ and such
that $(a+s)^{m}\not\in Q(S)$ for every natural number $m$ which is less than $n(s)$ .

Case 1. Assume that there is an infinite subset $s*$ of $S$ such that
$\{n(s)|s\in S^{*}\}$ is bounded. In this case, there is a natural number $N$ such that
$n(s)=N$ for an infinite subset $S^{**}$ of $s*$ . Take mutually distinct elements, $s_{0}$ ,

$s_{1},$ $\cdots,$ $s_{N}$ from $S^{**}$ and consider the relations

$a^{N}+\left(\begin{array}{l}N\\1\end{array}\right)s_{i}a^{N-1}+\cdots+\left(\begin{array}{l}N\\\alpha\end{array}\right)s_{i}^{\alpha}a^{N-\alpha}+\cdots+s_{i}^{N}=b_{i}\in Q(S)$

$(i=0,1, \cdots, N)$ .
Since the matrix

$A=($
$111$

$s_{1}s_{N}^{0}s\ldots s_{0}^{N}s_{N}^{N}s1N$

$)$

is non-singular, we see that the non-zero columns in


