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1. Let $K$ be a Galois extension of odd degree $n$ over the rational number
field $Q$ . Then $K$ is totally real and the group of units of $K$ has $(n-1)$ genera-
tors $mod \pm 1$ . Let $H$ be the group of totally positive units of $K$. Then $H$ has
also $(n-1)$ generators, and it is known that in case $n=3$ these generators can
be taken to conjugate to each other (cf. Hasse [1]). We shall show in this
paper that the same is true for $n=5$ .

In the following let $K$ be a cyclic field of degree 5 over $Q,$ $\sigma$ a generator
of the Galois group $G(K/Q)$ and $H$ the group of totally positive units of $K$.
For $\xi\in K,$ $\xi^{(i)}$ means $\sigma^{r-1}(\xi)\in K(i=1,2,3,4,5)$ . Then the points

$P(\xi)=(\log\xi^{(1)}, \log\xi^{(2)}, \log\xi^{(S)}, \log\xi^{(4)}, \log\xi^{(5)})\in R^{5}$

for $\xi\in H$ form a lattice $L$ lying in the hyperplane $\pi:x_{1}+x_{2}+x_{3}+x_{4}+x_{6}=0$ .
Obviously the five points $P(\xi^{(1)},$ $\cdots$ , $P(\xi^{(5)})$ lie at the same distance from the
origin $O$ of $R^{5}$ .

Let $\eta(\neq 1)$ be a unit in $H$ such that $P(\eta)\in L$ lies nearest to $O$ . Then our
main result is that $H$ is generated by any four of $\eta^{(1)},$ $\eta^{(2)},$ $\eta^{(3)},$ $\eta^{(4)},$ $\eta_{r}^{(5)}$

or geometrically expressed, $L$ is generated by $P(\eta^{(1)}),$ $\cdots$ , $P(\eta^{(6)})$ .
We shall namely prove the following theorem.
THEOREM. Let $K$ be an absolutely cyclic field of degree 5, and $H$ the group

of totally positive units of K. Then $H$ is generated by $\eta\in H$ and its conjugates.
where $\eta$ is an element $(\neq 1)$ of $H$ such that

$\sum_{\iota=1}^{5}(\log\eta^{(i)})^{2}\leqq\sum_{i=1}^{5}(\log\xi^{(\ell)})^{2}$

holds for any element $\xi\in H(\xi\neq 1)$ .

2. We shall first prove the following general proposition. Let $1\psi$ be an
n-dimensional lattice in $R^{n}$ , which is generated by $n$ vectors $oQ_{1},$

$OQ_{2}\rightarrow\rightarrow,$ $ oQ_{n}\rightarrow$ .
Let $d_{i}$ be the length of $ oQ_{i}\rightarrow$ $(i=1,2, \cdots , n)$ .


