On the relation for two-dimensional theta constants of level three

Dedicated to Professor Iyanaga on the occation of his 60th birthday

By Hisasi Morikawa

(Received June 18, 1967)
(Revised Sept. 18, 1967)

Let $\left\{Q_{11}, Q_{12}, Q_{22}\right\}$ be a system of indeterminates and denote

$$
\vartheta_{\mathbf{a}}(Q)=\sum_{\mathbf{m} \in \mathbf{z}^{2}} Q\left(\mathbf{m}+\frac{\mathbf{a}}{3}, \mathbf{m}+\frac{\mathbf{a}}{3}\right) \quad\left(\mathbf{a}=\left(a_{1}, a_{2}\right) ; a_{1}, a_{2}=0,1,-1\right),
$$

where $Q\left(\mathbf{m}+\frac{\mathbf{a}}{3}, \mathbf{m}+\frac{\mathbf{a}}{3}\right)$ means $Q_{11}^{\left(m_{1}+\frac{a_{1}}{3}\right)^{2}} Q_{12}^{2\left(m_{1}+\frac{a_{1}}{3}\right)\left(m_{2}+\frac{a_{2}}{3}\right)} Q_{22}^{\left(m_{2}+\frac{a_{2}}{3}\right)^{2}}$. In the present note we shall give an explicit defining equation for the projective scheme $\operatorname{Proj} \mathbf{Z}\left[\vartheta_{(0,0)}(Q), \vartheta_{(1,0)}(Q), \vartheta_{(0,1)}(Q), \vartheta_{(1,1)}(Q), \vartheta_{(1,-1)}(Q)\right]$. The defining equation $\Delta\left(X_{(0,0)}, X_{(1,0)}, X_{(0,1)}, X_{(1,1)}, X_{(1,-1)}\right)=0$ is a rather simple equation of degree ten. From this equation we can conclude the following important result:

Let ζ be a primitive cubic root of unity and $\bar{\Gamma}_{0}$ a transformation group on $\mathbf{Q}\left(\zeta, \vartheta_{(0,0)}(Q), \vartheta_{(1,0)}(Q), \vartheta_{(0,1)}(Q), \vartheta_{(1,1)}(Q), \vartheta_{(1,-1)}(Q)\right)$ consisting of all the elements

$$
(\alpha, \beta) ; \vartheta_{\mathbf{a}}(Q) \rightarrow \zeta^{\mathbf{a}^{\beta_{\alpha}} t_{\mathbf{a}}} \vartheta_{\mathbf{a} \alpha}(Q) \quad\left(\mathbf{a} \in G F(3)^{2}\right),
$$

where α, β are 2×2-matrices with coefficients in $G F(3)$ such that $\operatorname{det} \alpha^{\prime} \neq 0$ and $\beta^{t} \alpha=\alpha^{t} \beta$. Then the invariant subfield of $\mathbf{Q}\left(\zeta, \vartheta_{(1,0)}(Q) / \vartheta_{(0,0)}(Q), \vartheta_{(0,1)}(Q) / \vartheta_{(0,0)}(Q)\right.$, $\left.\vartheta_{(1,1)}(Q) / \vartheta_{(0,0)}(Q), \vartheta_{(1,-1)}(Q) / \vartheta_{(0,0)}(Q)\right)$ with respect to the group $\bar{\Gamma}_{0}$ of automorphisms is the rational function field $\mathbf{Q}\left(\zeta, \underset{\mathbf{a} \neq(0,0)}{\sum} \vartheta_{\mathbf{a}}(Q)^{3} / \vartheta_{(0,0)}(Q)^{3}, \underset{\mathbf{a} \neq(0,0)}{ } \vartheta_{\mathbf{a}}(Q)^{6} / \vartheta_{(0,0)}(Q)^{\boldsymbol{6}}\right.$, $\left.\vartheta_{(1,0)}(Q) \vartheta_{(0,1)}(Q) \vartheta_{(1,1)}(Q) \vartheta_{(1,-1)}(Q) / \vartheta_{(0,0)}(Q)^{4}\right)$.

§ 1. Canonical systems of theta constants on abstract abelian varieties.

1.1. Let \mathbf{A} be an abelian variety defined over an algebraically closed field of characteristic p, where p is a prime number or zero. Let ξ be an algebraic equivalent class on \mathbf{A} and X be a divisor in ξ. We denote by g_{X} the group of all the points a in A such that $X_{a} \sim X^{11}$. Since g_{X} depends only the class ξ, we may denote g_{ξ} instead of g_{X}. If g_{ξ} is a finite group, the divisor class ξ (the divisor X) is called non-degenerate. For any prime number l

1) $X_{a} \sim X$ means that X is linearly equivalent to X.
