On the relation for two-dimensional theta constants of level three

Dedicated to Professor Iyanaga on the occation of his 60th birthday

By Hisasi MORIKAWA

(Received June 18, 1967) (Revised Sept. 18, 1967)

Let $\{Q_{11}, Q_{12}, Q_{22}\}$ be a system of indeterminates and denote

$$\vartheta_{\mathbf{a}}(Q) = \sum_{\mathbf{m} \in \mathbf{z}^2} Q\left(\mathbf{m} + \frac{\mathbf{a}}{3}, \mathbf{m} + \frac{\mathbf{a}}{3}\right) \quad (\mathbf{a} = (a_1, a_2); a_1, a_2 = 0, 1, -1),$$

where $Q\left(\mathbf{m}+\frac{\mathbf{a}}{3},\mathbf{m}+\frac{\mathbf{a}}{3}\right)$ means $Q_{11}^{\left(m_{1}+\frac{a_{1}}{3}\right)^{2}}Q_{12}^{2\left(m_{1}+\frac{a_{1}}{3}\right)\left(m_{2}+\frac{a_{2}}{3}\right)}Q_{22}^{\left(m_{2}+\frac{a_{2}}{3}\right)^{2}}$. In the present note we shall give an explicit defining equation for the projective scheme Proj $\mathbb{Z}[\mathcal{G}_{(0,0)}(Q), \mathcal{G}_{(1,0)}(Q), \mathcal{G}_{(0,1)}(Q), \mathcal{G}_{(1,1)}(Q), \mathcal{G}_{(1,-1)}(Q)]$. The defining equation $\mathcal{L}(X_{(0,0)}, X_{(1,0)}, X_{(0,1)}, X_{(1,1)}, X_{(1,-1)})=0$ is a rather simple equation of degree ten. From this equation we can conclude the following important result:

Let ζ be a primitive cubic root of unity and $\overline{\Gamma}_0$ a transformation group on $\mathbf{Q}(\zeta, \vartheta_{(0,0)}(Q), \vartheta_{(1,0)}(Q), \vartheta_{(0,1)}(Q), \vartheta_{(1,1)}(Q), \vartheta_{(1,-1)}(Q))$ consisting of all the elements

 $(\alpha, \beta); \ \vartheta_{\mathbf{a}}(Q) \to \zeta^{\mathbf{a}\beta t_{\alpha}t_{\mathbf{a}}} \vartheta_{\mathbf{a}\alpha}(Q) \qquad (\mathbf{a} \in GF(3)^2),$

where α , β are 2×2-matrices with coefficients in GF(3) such that det $\alpha' \neq 0$ and $\beta^t \alpha = \alpha^t \beta$. Then the invariant subfield of $\mathbf{Q}(\zeta, \vartheta_{(1,0)}(Q)/\vartheta_{(0,0)}(Q), \vartheta_{(0,1)}(Q)/\vartheta_{(0,0)}(Q), \vartheta_{(1,-1)}(Q)/\vartheta_{(0,0)}(Q))$ with respect to the group Γ_0 of automorphisms is the rational function field $\mathbf{Q}(\zeta, \sum_{\mathbf{a}\neq(0,0)} \vartheta_{\mathbf{a}}(Q)^3/\vartheta_{(0,0)}(Q)^3, \sum_{\mathbf{a}\neq(0,0)} \vartheta_{\mathbf{a}}(Q)^6/\vartheta_{(0,0)}(Q)^6, \vartheta_{(1,0)}(Q)\vartheta_{(1,1)}(Q)\vartheta_{(1,-1)}(Q)/\vartheta_{(0,0)}(Q)^4$.

$\S1$. Canonical systems of theta constants on abstract abelian varieties.

1.1. Let **A** be an abelian variety defined over an algebraically closed field of characteristic p, where p is a prime number or zero. Let ξ be an algebraic equivalent class on **A** and X be a divisor in ξ . We denote by g_X the group of all the points a in A such that $X_a \sim X^{12}$. Since g_X depends only the class ξ , we may denote g_{ξ} instead of g_X . If g_{ξ} is a finite group, the divisor class ξ (the divisor X) is called non-degenerate. For any prime number l

¹⁾ $X_a \sim X$ means that X is linearly equivalent to X.