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1. Introduction

Let $k$ be a field and let $K=k(x_{1}, \cdots , x_{n})$ be a purely transcendental exten-
sion field over $k$ , obtained by adjunction of $n$ elements $x_{i}(i=1, \cdots , n)^{1)}$ which
are mutually independent over $k$ . Let $\mu$ denote the automorphism of $K/k$

such that

$\langle 1$) $\mu(x_{1})=x_{2}$ , $\mu(x_{2})=x_{3}$ , $\cdot$ .. , $\mu(x_{n})=x_{1}$ .
Let $G$ be the automorphism group of $K$ generated by $\mu$ and $L$ the subfield of
$K$ consisting of all the elements which are kept elementwise invariant by $G$ .
$G$ is a cyclic group of order $n,$ $[K:L]=n$ , and $K/L$ is a separable Galois
extension, having $G$ as its Galois group. Hence $L/k$ is a finite regular exten-
sion of dimension $n$ . Then the following is a classical problem:

PROBLEM. Is $L/k$ a purely transcendental extension ?
In this paper we deal only with the non-modular case of this problem.

From now on we assume that $n$ is not divisible by the characteristic of $k^{2)}$ .
When $k$ contains a primitive n-th root of 1, the problem is easy and was
solved3) in the affirmative. The most fundamental case of the problem is that
$k$ is the rational number field $Q$ and $n$ is a prime integer $p$ . In case of $k=Q$

and $n=p$ the problem has been solved only for $p=2,3,5$ , and $7^{4)}$ . The author
proved the pure transcendency of $L/Q$ in cascs $p=3,5$ , and 7 as follows (cf.
[3]). Let $T$ be the p-th cyclomic field and $H$ the Galois group of $T/Q$ . Let $\gamma$

1) In this paper, we use $i$ and $i$ as index variables. If $0$ belongs to the range of
the values, we use $j$ exclusively. If not, $i$ .

2) Cf. [1], where the modular case is studied.
3) For example, cf. [3], Theorem 1.
4) The first proof for the case $p=3$ is due to E. N\"other. We can see a good

bibliography for this classical problem in [2].


