Some results on Γ -extensions of algebraic number fields

Dedicated to Professor Iyanaga on his 60th birthday

By Sige-Nobu KURODA

(Received April 1, 1967)

Let l denote a prime number which we fix throughout the present paper. Let F_0 be an algebraic number field of finite degree, and let F/F_0 be a Γ extension over F_0 . Namely F/F_0 is a Galois extension whose Galois group is isomorphic to the additive group of l-adic integers. In the following we shall consider a Γ -module A(K/F), attached to F/F_0 , which will be defined analogously to the cyclotomic case considered by Iwasawa [8]. After the preliminaries in §1 we shall give in §2 a necessary and sufficient condition for the regularity of A(K/F) (as Γ -module) in terms of characters of idèle groups of intermediate fields of F and F_0 (Theorems 1 and 2). The Γ -module A(K/F)is intimately related to l-adic behaviour of global unit groups of algebraic number fields (Theorem 3 in §2).

Now let in particular the ground field F_0 be an imaginary quadratic extension of the rational number field. In such a case there exist, in a fixed algebraic closure of F_0 , two independent Γ -extensions over F_0 (with respect to our fixed prime number l). Under additional conditions on F_0 the regularity of A(K/F) will be obtained in §3 (Theorem 4 in §3).

General notations. We denote by l a prime number which we fix throughout the present paper¹). Z and Q stand for the ring of rational integers and the rational number field, respectively. We denote by Z_l and Q_l the ring of l-adic integers and the l-adic completion of Q, respectively. Z/(d)Z means the additive group of integers modulo d, where $d \in Z$.

§1. Preliminaries.

1.1.²⁾ Now let in general E be a field and K/E a Galois extension. Then the Galois group of K/E equipped with the Krull topology will be denoted by G(K/E). Let F be an intermediate field of K and E which is also a Galois extension over E. Then the Galois group G(F/E) is canonically isomorphic to

¹⁾ We reserve the notations p, p, etc. for general prime numbers or prime divisors.

²⁾ Cf. Iwasawa [8], §1. The purpose of the descriptions in §1.1 and §1.2 is to introduce notations.