The congruence monodromy problems

Dedicated to Professor Shôkichi Iyanaga on his 60 th birthday

By Yasutaka IHARA

(Received Aug. 31, 1967)

Introduction

This is a summary of the forthcoming lecture note [1]. All details and proofs of the theorems will be given in [1], and are omitted here.
§ 0-1. The problems. Let $G=\operatorname{PSL}_{2}(R) \times \operatorname{PSL}_{2}\left(k_{p}\right)$, where R and k_{p} are the real number field and a \mathfrak{p}-adic number field with $N \mathfrak{p}=q$ respectively, and $\mathrm{PSL}_{2}=\mathrm{SL}_{2} / \pm 1$. Let Γ be a torsion-free discrete subgroup of G with compact quotient, having a dense image of projection in each component of G. Our subject is such a discrete subgroup Γ. This study was motivated by the following series of conjectures which were suggested by our previous work [2]*. Since our group Γ is essentially nonabelian (see § $1-5$, property (iv)), the readers will see that, by our conjectures, Γ would describe a " non-abelian class field theory" over an algebraic function field of one variable with finite constant field $F_{q^{2}}$. We would like to call the problems of determination of the validity of these conjectures, the congruence monodromy problems.

Conjectures**. With each Γ, we can associate an algebraic function field K of one variable with finite constant field $F_{q^{2}}$ and with genus $g \geqq 2$, and a finite set $\mathbb{S}(K)$ consisting of $(q-1)(g-1)$ prime divisors of K of degree one over $F_{q^{2}}$, satisfying the following properties. Here, the elements of $\mathbb{C}(K)$ are called the exceptional prime divisors, while all other prime divisors of K are called the ordinary prime divisors.

Conjecture 1. The ordinary prime divisors P of K are in one-to-one correspondence with the pairs $\left\{\gamma_{P}^{ \pm 1}\right\}_{\Gamma}$ of mutually inverse primitive elliptic conjugacy classes of Γ (see $\S 1$ for the definitions).

Conjecture 2. The finite unramified extensions K^{\prime} of K, in which all $(q-1)(g-1)$ exceptional prime divisors of K are decomposed completely, are in

[^0]
[^0]: * The proofs of results stated in [2] will also be given in [1]. There is some overlap between a part of $\S 2$ of [2] and $\S 1$ of this paper.
 ** See also § 3.

