# On certain groups with involutive generators 

Dedicated to Professor S. Iyanaga for his 60th birthday

By Hiroaki Hijıkata

(Received July 27, 1967)

A group $W$, to be studied in this note, is supposed to have some special subset $R$, i. e. (1) $R$ generates $W$, each element of $R$ is involutive, (i. e. of order two), (2) $R$ satisfies a certain condition ( $\boldsymbol{C}$ ) given in our Definition 1. Such an $R$ will be called a good system of involutive generators of $W$. For example take the Weyl group of a semi-simple Lie algebra as $W$, and take the set of fundamental reflexions as $R$, then our requirements (1) and (2) are fulfilled by them. Indeed, as H. Matsumoto [1] has shown, a good system of involutive generators is a natural generalization of a set of fundamental reflexions in a Weyl group in the following sense.
(I) If $W$ is a Weyl group (in the generalized sense) associated to a BN-pair, and $R$ be the set of canonical generators of $W$ (see Tits [3]), then $R$ is a good system of involutive generators of $W$.
(II) All the group theoretical properties of $W$ follow from (C). Indeed we can write down the fundamental relations among the elements of $R$.

Now let $\Gamma$ be a group of automorphisms of $W$, and assume that each element of $\Gamma$ induces a permutation of $R$. The purpose of this note is to study the structure of the group $W^{\Gamma}$ of the set of all $\Gamma$-fixed points of $W$. Let $R_{j}\left(j \in \boldsymbol{J}^{\prime}\right)$ be $\Gamma$-orbits of $R$, and $W_{j}$ be the group generated by $R_{j}$. Our theorems say;
$W_{j}^{\Gamma}$ is either of order one or of order two (Theorem 1).
Take the generator $s_{j}$ from each non-trivial $W_{j}^{\Gamma}$, then $\left\{s_{j}\right\}$ is a good system of involutive generators of $W^{\boldsymbol{\Gamma}}$ (Theorem 2 and 3).

Such phenomena for a Weyl group (in the ordinary sense) was recognized by R. Steinberg [2], and used in his construction of new simple groups. Generalized version treated in this note has of course similar application to the theory of descent of BN-pairs (cf. [4]).

[^0]
[^0]:    * After the manuscript was submitted, the author has learned from Prof. N. Iwahori that the result of this paper (including appendix) was known by R. Steinberg (yet unpublished) by using a geometrical realization of $W$.

