A new proof of the Baker-Campbell-Hausdorff formula

Dedicated to Professor Shôkichi Iyanaga on his 60th birthday

By M. Eichler

(Received Jan. 11, 1967)

This formula states

$$
\begin{equation*}
e^{A} \cdot e^{B}=e^{Z}, \quad Z=\sum_{n=1}^{\infty} F_{n}(A, B) \tag{1}
\end{equation*}
$$

for noncommuting indeterminates A, B with homogeneous polynomials $F_{n}(A, B)$ of degree n which have the essential property that they are formed from A, B by Lie multiplication, except for $F_{1}(A, B)=A+B$. We shall briefly speak of Lie polynomials. The usual proofs (e.g. [1], [2]) employ preliminary theorems by Finkelstein or Friedrichs characterizing Lie polynomials by formal properties (see also [3]). In the following lines I give a short proof which needs no preparations.

It is evident that polynomials $F_{n}(A, B)$ exist satisfying (1). We only have to prove that they are Lie polynomials. The first two are

$$
F_{1}(A, B)=A+B, \quad F_{2}(A, B)=\frac{1}{2}(A B-B A) .
$$

Now let $n>2$ and assume that all $F_{\nu}(A, B)$ with $\nu<n$ are Lie polynomials. With 3 indeterminates we express

$$
\begin{aligned}
\left(e^{A} e^{B}\right) e^{C} & =e^{A}\left(e^{B} e^{C}\right): \\
W & =\sum_{i=1}^{\infty} F_{i}\left(\sum_{j=1}^{\infty} F_{j}(A, B), C\right)=\sum_{i=1}^{\infty} F_{i}\left(A, \sum_{j=1}^{\infty} F_{j}(B, C)\right)
\end{aligned}
$$

and compare the homogeneous terms of degree n on both sides, using the following 2 facts: 1) If $F(A, B, \cdots), X(A, B, \cdots), Y(A, B, \cdots), \cdots$ are Lie polynomials then also $G(A, B, \cdots)=F(X(A, B, \cdots), Y(A, B, \cdots), \cdots)$ is one. 2) If $F(A, B, \cdots)$ is a Lie polynomial then the homogeneous summands into which F splits up. are Lie polynomials. The induction assumption implies that all homogeneous. terms of degree n in both expressions for W are Lie polynomials with the possible exceptions of $F_{n}(A, B)+F_{n}(A+B, C)$ on the left side and $F_{n}(A, B+C)$. $+F_{n}(B, C)$ on the right. In other words, the difference is a Lie polynomial. We can abbreviate this as

$$
\begin{equation*}
F(A, B)+F(A+B, C) \sim F(A, B+C)+F(B, C) \tag{2}
\end{equation*}
$$

