Reduction of logics to the primitive logic

By Katuzi Ono

(Received April 1, 1967)

Introduction

Main conclusion of my work [2] has been the following: Any logic belonging to \mathbf{J}-series (the intuitionistic logic $\mathbf{L J}$, the minimal logic $\mathbf{L M}$, and the positive logic LP, each without assuming Peirce's rule) or to \mathbf{K}-series (the classical logic LK, the minimal logic $\mathbf{L N}$, and the positive logic $\mathbf{L Q}$ which are stronger than $\mathbf{L J}, \mathbf{L M}$ and $\mathbf{L P}$ by Peirce's rule, respectively) can be faithfully interpreted in the primitive logic $\mathbf{L O}$ (the sub-logic of the intuitionistic logic $\mathbf{L J}$ having the logical constants, implication and universal quantification, only). I call here any logic L a sub-logic of another $\operatorname{logic} L^{*}$ if and only if every logical constant of \mathbf{L} is a logical constant of \mathbf{L}^{*} and every proposition expressible in terms of the logical constant of \mathbf{L} is provable in \mathbf{L} if and only if it is provable in \mathbf{L}^{*}.

Faithful interpretation of the intuitionistic logic LJ and the classical logic LK in the primitive logic LO can be realized by \mathfrak{R}-transform $\mathfrak{A}^{[9]]}$ of any proposition \mathfrak{A} with respect to an n-ary relation \mathfrak{F}. $\mathfrak{Y}^{[r 9]}$ can be defined recursively as follows (ξ stands for a sequence of n distinct variables, none of them is assumed to occur free in \mathfrak{F} and (B) :
$\mathfrak{F}^{[\mathfrak{F l}]} \equiv(\xi)((\mathfrak{F} \rightarrow \Re(\xi)) \rightarrow \Re(\xi))$ for any elementary formula \mathfrak{F},

$$
\begin{aligned}
& \left(\mathfrak{F} \rightarrow(\mathbb{S})^{[x]} \equiv\left(\mathcal{F}^{[r]} \rightarrow \mathbb{G}^{[r x]}\right),\right. \\
& ((t) \mathfrak{F})^{[x]} \equiv(t) \mathfrak{F}^{[r]} \text {, } \\
& \left.(\mathscr{F} \wedge \mathscr{G})^{[x]} \equiv(\xi)\left(\left(\mathfrak{F}^{[r]} \rightarrow(\mathscr{F})^{[r]} \rightarrow \mathfrak{R}(\xi)\right)\right) \rightarrow \mathfrak{R}(\xi)\right), \\
& (\mathfrak{F} \vee \mathbb{S})^{[\mathfrak{M}]} \equiv(\xi)\left(\left(\mathfrak{F}^{[\mathfrak{M}]} \rightarrow \mathfrak{R}(\xi)\right) \rightarrow\left(\left(\mathcal{G}^{[\mathfrak{R}]} \rightarrow \mathfrak{R}(\xi)\right) \rightarrow \mathfrak{R}(\xi)\right)\right), \\
& ((\exists t) \mathfrak{F})^{[x]} \equiv(\xi)\left((t)\left(\mathfrak{F}^{[x]} \rightarrow \mathfrak{R}(\xi)\right) \rightarrow \mathfrak{R}(\xi)\right), \\
& (\neg \mathfrak{F})^{[x]} \equiv \mathfrak{F}^{[r]} \rightarrow(\xi) \mathbb{R}(\xi) .
\end{aligned}
$$

Now, we can prove the following theorem: \mathfrak{A} is provable in LJ if and only if $\mathfrak{X}^{[R]}$ is provable in LO, assuming that R is an n-ary relation symbol having no occurrence in \mathfrak{A} for some $n(n \geqq 1)$. \mathfrak{A} is provable in $\mathbf{L K}$ if and only if $\mathfrak{A}^{[R]}$ is provable in LO, assuming that R is a 0-ary relation symbol i.e. proposition symbol having no occurrence in \mathfrak{N}.

