On ℵ₀-complete cardinals

By Kanji NAMBA

(Received Oct. 29, 1965)

In [4], D. Scott proved that, if we assume V = L and the existence of a measurable cardinal number in the set theory Σ^* of [1], then we have a contradiction.

The main purpose of this parer is to investigate on the problem concerning to certain kind of constructibility and the existence of \aleph_0 -complete cardinal numbers (2-valued measurable cardinal numbers). In view of this point, we first remark that if the system Σ^* , $\exists x T(x)$ is consistent, then the system

$$\Sigma^*, \exists y(T(y) \land \exists x(V = L_x \land Od_x ``x \subset 2^y))$$

is consistent, where T(y) is the statement that there is a non-principal \aleph_0 complete ultrafilter over the set y whose character is cardinal number y, and L_x is the class constructed from the set x by Lévy's method in [2].

In this paper we prove the following several results:

1) The system Σ^* , $\exists y(T(y) \land \exists x(V = L_x \land Od_x ``x \subset y))$ is not consistent.

2) Let $\Phi(a)$ be a standard defining postulate defined later. Then the system Σ^* , $\exists x(T(x) \land \Phi(x))$ is not consistent.

Remark that, as is well known, all of the defining postulates of the following cardinals are standerd: $\aleph_0, \aleph_1, \dots, \aleph_{\omega}, \dots$; the first one of weakly inaccessible cardinal, strongly inaccessible cardinal, hyper-inaccessible cardinal; the first cardinal α such that α is hyper-inaccessible of type α ; and so on.

Concerning to this kind of results, I would like to propose the following problem: For what kind of formula A(a), is the system Σ^* , $\exists x(T(x) \land A(a))$ not consistent? Especially what will happen for the formulas $\exists x(V = L_x \land \sup(Od_x x) < 2^{\overline{a}})$ or $\exists x(V = L_x \land \sup(Od_x x) < a^+)$ where a^+ is the smallest cardinal number strictly greater than a.

I would like to express my thanks to Professor T. Nishimura for his valuable suggestions and conversations.

1. We shall begin by introducing several notations and the terminology.

DEFINITION. An ultrafilter \mathcal{F} is said to be \aleph_{α} -complete, if the following condition is satisfied:

if $A_{\nu} \in \mathcal{F}$ for each $\nu \in I$, then $\bigcap_{\nu \in I} A_{\nu} \in \mathcal{F}$, where $\overline{I} \leq \bigotimes_{\alpha} A_{\nu}$.