Horizontal lifts from a manifold to its cotangent bundle

By K. Yano and E. M. Patterson

(Received Aug. 10, 1966)

§ 1. Introduction.

The concepts of vertical and complete lifts from a differentiable manifold M of class C^{∞} to its cotangent bundle ${ }^{c} T(M)$ were introduced in a recent paper, [4]. Vertical lifts of functions, vector fields, 1 -forms and tensor fields of type (1,1) or (1,2) were defined. The definitions of complete lifts were restricted to vector fields, tensor fields of type $(1,1)$ and skew-symmetric tensor fields of type (1,2). In each case, the complete lift of a tensor field has the same type as the original; however vertical lifts do not have this property. In $\S 2$ of the present paper, we summarise the details of the relevant formulae.

In the present paper we introduce another type of "lift" from M to ${ }^{c} T(M)$, which we call the horizontal lift. We apply our definition to vector fields, tensor fields of type $(1,1)$ and connections in M. As in the previous paper, we obtain from our construction useful information about the relationships between the structures of M and ${ }^{c} T(M)$.

The most significant difference between the constructions in the present paper and the earlier constructions is that we now assume that a symmetric affine connection is given in the manifold M. The definition of horizontal lift depends upon this connection, whereas the definitions of vertical and complete lifts were independent of connections.

§ 2. Notations and preliminary results.

Throughout, M denotes a differentiable manifold of class C^{∞} and of dimension n. Its cotangent bundle is denoted by ${ }^{c} T(M)$ and $\pi:{ }^{c} T(M) \rightarrow M$ is the projection mapping. We write U for a coordinate neighbourhood in M and $\pi^{-1}(U)$ for the corresponding coordinate neighbourhood in ${ }^{c} T(M)$.

Suffixes A, B, C, D take the values 1 to $2 n$. Suffixes $a, b, c, \cdots, h, i, j, \ldots$ take the values 1 to n and $\bar{i}=i+n$, etc. The summation convention for repeated indices is used. Whenever notations such as $\left(F_{B}{ }^{A}\right)$ are used for matrices, the suffix on the left indicates the column and the suffix on the right indicates

