On the equivalence of Gaussian measures

By Hiroshi Sato

(Received April 15, 1966)
(Revised Oct. 21, 1966)

§ 1. Introduction.

Let P be a Gaussian measure on the function space $\left(\boldsymbol{R}^{T}, \mathscr{B}\right)$, where T is an interval and \mathscr{B} is the σ-algebra generated by all cylinder sets. Then the family of w-functions:

$$
X(t, w)=\text { the } t \text {-coordinate of } w, w \in \boldsymbol{R}^{T}, t \in T
$$

defines a Gaussian process on the probability measure space ($\boldsymbol{R}^{T}, \mathscr{B}, P$). Conversely, every Gaussian process on an arbitrary probability measure space has a representation of such type (coordinate representation). In this paper we shall use only the coordinate representation, unless stated otherwise. Thus we have a one-to-one correspondence between Gaussian processes with the time parameter t in T and Gaussian measures on the function space \boldsymbol{R}^{T}. Two Gaussian processes are said to be equivalent, if their corresponding Gaussian measures are equivalent, i. e. mutually absolutely continuous.
J. Hajek [1] and J. Feldman [2] found independently that two Gaussian measures are either equivalent or singular, and Yu. Rozanov [3] established a criterion for the equivalence in terms of the linear operator on $L^{2}(X)$, Hilbert space spanned by $\{X(t, w)\}$ (the precise definition is given in section 2).
D. Varberg [7] has established a necessary and sufficient condition for a class of Gaussian processes to be equivalent to the Brownian motion. He treats the 'factorable' Gaussian processes, the covariance function of which can be written in the form

$$
r(t, s)=\int_{T} R(t, u) R(s, u) d u
$$

where T is a finite interval $[0, b]$. Further he gives conditions on the kernel function of the linear transformation acting on the Brownian path.

Lately L. Shepp [10] has solved many problems concerning the B-equivalence (the equivalence to the Brownian motion $\{B(t, w)\}$) of a Gaussian process. He has given a simple necessary and sufficient condition on the mean and

