Topological covering of SL(2) over a local field

By Tomio KUBOTA

(Received Oct. 19, 1966)

The purpose of this paper is to show that, if F is a local field different from the field C of complex numbers, and if F contains the *m*-th roots of unity, then the topological group SL(2, F) has an *m*-fold, non-trivial, topological covering group which is of a fairly number-theoretical nature. In the sequel, a local field will always mean a completion, by a finite or infinite place, of an algebraic number field of finite degree, and SL(2, F) will mean the topological group of all 2×2 matrices with determinant 1 over a local field F.

We shall obtain a topological covering of SL(2, F) by proving in a elementary way that an expression containing Hilbert's symbols is actually a factor set of SL(2, F).

Hilbert's symbol¹⁾ of degree m of a local field F containing the m-th roots of unity will be denoted by (α, β) , where α, β are non-zero numbers of F. In addition to fundamental properties of Hilbert' symbol, the relation

(1)
$$(\alpha, \beta)(-\alpha^{-1}\beta, \alpha+\beta) = 1$$

is useful in our arguments. This formula is valid whenever $\alpha \neq 0$, $\beta \neq 0$, and $\alpha + \beta \neq 0^{2}$.

Now, our result is the following

THEOREM. Let $F \neq C$ be a local field containing the m-th roots of unity, let G = SL(2, F), and, for an element $\sigma = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in G$, put $x(\sigma) = \gamma$ or δ according to $\gamma \neq 0$ or = 0. Furthermore, for $\sigma, \tau \in G$, put

(2)
$$a(\sigma, \tau) = (x(\sigma), x(\tau))(-x(\sigma)^{-1}x(\tau), x(\sigma\tau)).$$

Then, $a(\sigma, \tau)$ satisfies the factor set relation

(3)
$$a(\sigma, \tau)a(\sigma\tau, \rho) = a(\sigma, \tau\rho)a(\tau, \rho)$$

for any σ , τ , $\rho \in G$, and determines an m-fold topological covering group of G.

The proof will be performed in $\S 2$, and the non-triviality of the covering in the theorem will be treated in $\S 3$.

From the form of the factor set (2), it is understood that our theorem has

¹⁾ As for the definition of Hilbert's symbol, see [1].

^{2) [1],} p. 55, formula (15).