Topological covering of $S L(2)$ over a local field

By Tomio Kubota

(Received Oct. 19, 1966)

The purpose of this paper is to show that, if F is a local field different from the field \boldsymbol{C} of complex numbers, and if F contains the m-th roots of unity, then the topological group $S L(2, F)$ has an m-fold, non-trivial, topological covering group which is of a fairly number-theoretical nature. In the sequel, a local field will always mean a completion, by a finite or infinite place, of an algebraic number field of finite degree, and $S L(2, F)$ will mean the topological group of all 2×2 matrices with determinant 1 over a local field F.

We shall obtain a topological covering of $S L(2, F)$ by proving in a elementary way that an expression containing Hilbert's symbols is actually a factor set of $S L(2, F)$.

Hilbert's symbol ${ }^{1 \text { 1 }}$ of degree m of a local field F containing the m-th roots of unity will be denoted by (α, β), where α, β are non-zero numbers of F. In addition to fundamental properties of Hilbert' symbol, the relation

$$
\begin{equation*}
(\alpha, \beta)\left(-\alpha^{-1} \beta, \alpha+\beta\right)=1 \tag{1}
\end{equation*}
$$

is useful in our arguments. This formula is valid whenever $\alpha \neq 0, \beta \neq 0$, and $\alpha+\beta \neq 0^{22}$.

Now, our result is the following
Theorem. Let $F \neq \boldsymbol{C}$ be a local field containing the m-th roots of unity, let $G=S L(2, F)$, and, for an element $\sigma=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in G$, put $x(\sigma)=\gamma$ or δ according to $\gamma \neq 0$ or $=0$. Furthermore, for $\sigma, \tau \in G$, put

$$
\begin{equation*}
a(\sigma, \tau)=(x(\sigma), x(\tau))\left(-x(\sigma)^{-1} x(\tau), x(\sigma \tau)\right) . \tag{2}
\end{equation*}
$$

Then, $a(\sigma, \tau)$ satisfies the factor set relation

$$
\begin{equation*}
a(\sigma, \tau) a(\sigma \tau, \rho)=a(\sigma, \tau \rho) a(\tau, \rho) \tag{3}
\end{equation*}
$$

for any $\sigma, \tau, \rho \in G$, and determines an m-fold topological covering group of G.
The proof will be performed in $\S 2$, and the non-triviality of the covering in the theorem will be treated in $\S 3$.

From the form of the factor set (2), it is understood that our theorem has

[^0]
[^0]: 1) As for the definition of Hilbert's symbol, see [1].
 2) $[\mathbf{1}]$, p. 55, formula (15).
