On meromorphisms and congruence relations

By Junji HASHIMOTO

(Received June 1, 1966)

1. Introduction

By a *meromorphism* between two algebraic systems admitting the same operations, we mean a many-many correspondence of elements which preserves all algebraic combinations. In the present paper the correspondence of elements under the meromorphism φ shall be written $a \rightarrow b(\varphi)$ or $a\varphi b$. A meromorphism φ is called a *class-meromorphism* if and only if $a\varphi b$, $a'\varphi b$ and $a'\varphi b'$ imply $a\varphi b'$. In Shoda's theory on abstract algebraic systems the following condition is often assumed:

Every meromorphism between two homomorphic images of an algebraic system A is a class-meromorphism.

In a previous paper [4] we have shown that the above condition is equivalent to the condition

(α) Every meromorphism of A onto itself is a class-meromorphism.

A meromorphism φ of an algebraic system A onto itself may be considered a relation between elements of A. If φ is reflexive, we shall call φ a *quasicongruence*. In the paper cited above it has been shown also that a quasicongruence φ on A is a class-meromorphism if and only if it is a congruence relation on A. Let φ and ψ be two quasi-congruences on A. We shall write $a\varphi\psi b$ to mean $a\varphi c$ and $c\psi b$ for some $c \in A$, and $a\bar{\varphi}b$ to mean $b\varphi a$. Quasicongruences φ and ψ are called *permutable* if $\varphi \phi = \psi \varphi$. The symmetricity and transitivity of a quasi-congruence φ are written $\bar{\varphi} \leq \varphi$ and $\varphi^2 \leq \varphi$ respectively. In the present paper we shall discuss the following conditions on an algebraic system A:

(β) Every quasi-congruence on A is a congruence.

(γ) Every quasi-congruence on A is symmetric.

(δ) Every quasi-congruence on A is transitive.

(c) All quasi-congruences on A are permutable.

(ζ) All congruences on A are permutable.

About those conditions it is easy to see that the following implications hold.