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\S 0. Introduction.

Our aim of this paper is to investigate the regular points of multi-dimen-
sional standard processes having an adequate Green function $G(x, y)$ with the
condition $(S)$ ;

$(S)$ . There exists $\alpha\in(0, d)(d\geqq 3)$ such that for any compact set $K$ given,
there exist $\delta>0$ and $C_{1}C_{2}\in(0, \infty)$ such that

$C_{1}|x-y|^{-\alpha}\geqq G(x, y)\geqq C_{2}|x-y|^{-\alpha}$

for $|x-y|<\delta$ and $x,$ $y\in K$.
In case $d=2$ , we include the following case:

$C_{1}\log_{|x-y}\neg^{1}\geqq G(x, y)\geqq C_{2}\log\frac{1}{|x-y|}$ .

In \S 1, for an adequate Green function with the condition $(S)$ , we shall
construct a standard process in Dynkin’s sense with

$E_{x}(\int_{0^{\zeta}}f(x_{t})dt)=Gf(x)$

by modifying Ray’s theory. [Th. 1.1.]

In \S 2 and \S 3, we shall apply the result of \S 1 to the uniformly elliptic
operators of the forms

i) $D^{s}u=\sum_{i\cdot j=1}^{a}\frac{\partial}{\partial x_{i}}(a_{ij}-\partial\partial\frac{u}{\chi_{j}})$ ,

where $\{a_{ij}\}$ are bounded, measurable and symmetric,

ii). $D^{*}u=\sum_{i\cdot j=1}\frac{\partial^{2}}{\partial x_{i}\partial x_{j}}(a_{ij}\cdot u)-\sum_{i=1}^{a}\frac{\partial}{\partial x_{i}}(a_{i}\cdot u)$ ,

where $\{a_{ij}\},$ $\{a_{i}\}$ are bounded H\"older continuous, and in addition W. Littman’s
condition $(L)$ is assumed:

$(L)$ $-\int_{\Omega}Dv(x)dx\geqq 0$


