Remarks on evolution inequalities

By J. L. Lions ${ }^{1)}$

(Received May 17, 1966)

Introduction

The Lax-Milgram Lemma was extended by G. Stampacchia [4] to the following: if $a(u, v)$ is a continuous bilinear form coercive on a (real) Hilbert space V and if K is a closed convex set in V, then, given a continuous linear form $v \rightarrow L(v)$ on V, there exists a unique element u in K such that $a(u, v-u)$ $\geqq L(v-u) \forall v \in K$ (the Lax-Milgram Lemma corresponds to the case when $K=V$).

In a joint work with Stampacchia [10] [11] we studied similar problems for bilinear forms which are (i) either $\geqq 0$ but not coercive (ii) either defined on two different Hilbert spaces.

In this paper we give some complements to the result of [11] on (ii). This will solve, as a particular case-see Section 3.3. below-the following non linear boundary value problem: find a function $u(x, t), x \in \Omega \subset \boldsymbol{R}^{n}, t \in(0, T)$, $T<\infty$, such that:

$$
\begin{gather*}
\frac{\partial u}{\partial t}-\Delta u+u=f \quad\left(\Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{n}^{2}}\right), \tag{1}\\
u \geqq 0 \quad \text { on } \quad \Gamma \times(0, T) \quad(\Gamma=\text { boundary of } \Omega) \tag{2}\\
\frac{\partial u}{\partial \nu} \geqq 0 \quad \text { on } \quad \Gamma \times(0, T) \quad\left(\frac{\partial}{\partial \nu}=\text { exterior normal derivative }\right) \\
u \cdot \frac{\partial u}{\partial \nu}=0 \quad \text { on } \quad \Gamma \times(0, T), \tag{3}
\end{gather*}
$$

(The case when instead of the "periodic problem" (3) we consider the "initial value problem " $u(x, 0)=$ given was solved in [11].)

Section 1 gives a general existence theorem; Section 2 gives applications to "ordinary" evolution equations and Section 3 gives a general existence

[^0]
[^0]: 1) This paper develops technical details of part of a lecture given at the Annual Meeting of the Math. Soc. Japan, Kyoto, May 1966. Other parts of the lecture corresponded to a joint work with G. Stampacchia [10] [11].
