Transformations of flows

By Gisiro MARUYAMA

(Received April 25, 1966)

§ 0. Preliminaries.

Given a topological space (X, σ) with the family of open sets σ , the corresponding topological measurable space is defined to be the pair $(X, \mathcal{B}_{\sigma})$, where \mathcal{B}_{σ} is the family of Borel sets. If in particular σ is defined by a metric with distance function d, then we write it \mathcal{B}_d instead of \mathcal{B}_{σ} , Furthermore, if the topological measurable space is furnished with a measure ν , the completion of \mathcal{B}_{σ} or \mathcal{B}_d will be denoted by \mathcal{L}_{σ} or \mathcal{L}_d respectively.

In this paper, for basic measure space is taken Lebesgue space (M, \mathcal{L}, μ) , where \mathcal{L} is the underlying σ -algebra, complete under μ , and $\mu(M) = 1^{10}$.

Let (Ω, d) be a complete metric separable space with distance function d, and probability measure P over \mathcal{B}_d . Then $(\Omega, \mathcal{L}_d, P)$ is a Lebesgue space. The family of Lebesgue spaces coincides with that of such probability spaces; any Lebesgue space is isomorphic with [0, 1] endowed with an ordinary probability distribution.

A flow²⁾ on M is a set $\mathfrak{S} = \{M, T_t, \mu\} = \{M, T_t\}$, where $t \in T = (-\infty, \infty)$, T_t is a one-parameter group of automorphisms on M. In the theory of flows, the choice of Lebesgue space for underlying measure space eliminates measure-theoretic complexities. This depends on the separability properties specific to every Lebesgue space.

Now given a flow $\mathfrak{S} = \{M, T_t, \mu\}$, one can carry it over a metric space Ω , getting a flow $\mathfrak{S}' = \{\Omega, S_t, P\}$ which is isomorphic with \mathfrak{S} , with the path $\omega_t = T_t \omega$, $\omega \in \Omega$, continuous in (t, ω) . Such a method of representing a given flow on a metric space goes back to Ambrose and Kakutani [2].

Among those representations a convenient one is that in which the underlying space Ω consists of measurable t-functions, and S_t is the one-parameter family of shifts acting on Ω . For such a flow (Ω, S_t, P) , the trajectory $S_t\omega$, $-\infty < t < \infty$, is also continuous in (t, ω) . The advantage of this method consists in the fact that the regularity of the paths and metric topology in

¹⁾ For basic properties of the Lebesgue space, see Rohlin [6].

²⁾ Rohlin [7] presents an excellent exposition of the theory of automorphisms and flows developed up to 1949.