A cohomology for Lie algebras

By U. Shukla

(Received Dec. 8, 1965)

1. Introduction.

Dixmier [1] has proposed a cohomology for Lie rings (that is, Lie algebras over the ring of integers). In this paper we propose a cohomology for Lie algebras over a ring in which the element 2 is invertible. First we construct a complex over a Lie algebra and then define a cohomology. We then show that the 0 -cohomology module is isomorphic to the submodule of invariant elements of the module of coefficients, the 1 -cohomology module is the module of crossed homomorphisms of the Lie algebra into the module of coefficients modulo the principal homomorphisms, and the 2 -cohomology module is in one-one correspondence with the set of equivalence classes of special (or singular) extensions of the Lie algebra with the module of coefficients as kernel. While trying to interpret the 3 -cohomology module the task of showing that every element of it is indeed an obstruction becomes too difficult and it has not been possible to accomplish it.

There is a great similarity between the constructions and proofs given in this paper and those given in [2], but they do need working out since the structure of a Lie algebra, thanks to the Jacobi identity, is not as simple as that of an associative algebra and one cannot be sure of the truth of a theorem without a comprehensive proof. Those definitions which have not been given here formally can be obtained from [2] with obvious changes (e. g. for an associative algebra substitute a Lie algebra).

2. Definition of cohomology.

Let K be a commutative ring with unit element $1(\neq 0)$ such that there exists an element $k \in K$ for which $2 k=1$. Throughout this paper we shall consider Lie algebras over the ring K. A differential graded Lie algebra over the ring K is a graded K-module $U=\sum_{n \geq 0} U_{n}$ together with (i) a K-homomorphism $U \bigotimes_{K} U \rightarrow U$ given by $u_{i} \otimes u_{j} \rightarrow\left[u_{i}, u_{j}\right]$, where $u_{i} \in U_{i}, u_{j} \in U_{j}$ and $\left[u_{i}, u_{j}\right]$ $\in U_{i+j}$, satisfying the following relations:
(2.1) $\quad[u, u]=0, \quad$ where $u \in U$ is homogeneous element of even degree ;

