A characterisation of exponential distribution semi-groups

By Daisuke FUJIWARA

(Received March 30, 1966)

§1. Introduction.

The notion of the (exponential) distribution semi-group of operators in a Banach space was defined by Lions [1]. He characterized the infinitesimal generator of an exponential distribution semi-group by proving generalized Hille-Yosida theorem (cf. also Foias [2], Yoshinaga [3], [4] and Peetre [5]).

In this paper we shall show another characterisation of exponential distribution semi-group. By virtue of this characterisation, we shall define and characterize holomorphic exponential distribution semi-groups. Finally we shall prove a regularity property of holomorphic distribution semi-groups.

The author wishes to express his gratitude to Professor K. Yosida who kindly gave him many advices in the preparation of this paper.

§2. Summary for Lions' results.

We use the following notations: t represents a real variable; \mathcal{D}_0 is the space of C_0^{∞} functions which vanish in t < 0; \mathscr{S} is the space of rapidly decreasing C^{∞} functions; \mathscr{E}' is the space of distributions with compact support. Let E be a Banach space. If x is an element of E, ||x|| is the norm of x. L(E, E) is the Banach space of bounded linear operators in E. δ_{τ} is the Dirac distribution concentrated at $t = \tau$.

DEFINITION 1. A distribution semi-group (D. S. G. in short) G is an L(E, E)-valued distribution such that

- (i) the support of G is contained in $[0, \infty)$,
- (ii) $G(\varphi * \psi) = G(\varphi)G(\psi)$, for any φ and ψ in \mathcal{D}_0 ,
- (iii) if $\varphi \in \mathcal{D}_0$ and $x \in E$, and if $y = G(\varphi)x$, the distribution Gy defined by $Gy(\varphi) = G(\varphi)y$ is almost everywhere equal to a function u(t) which is continuous for $t \ge 0$, u(+0) = y and u(t) = 0 for t < 0,
- (iv) the set $\mathscr{R} = \left\{ \sum_{i=1}^{m} G(\varphi_i) x_i \mid \varphi_i \in \mathscr{D}_0, x_i \in E \right\}$ is dense in E,

(v) if
$$x \in E$$
, $G(\varphi)x = 0$ for any $\varphi \in \mathcal{D}_0$, then $x = 0$.

DEFINITION 2. A D.S.G. G is called an exponential distribution semi-