The notion of restricted ideles with application to some extension fields II

By Yoshiomi FURUTA

(Received Jan. 10, 1966)

Let k be an algebraic number field of finite degree, K be a normal extension of k of degree n, and (G) be its galois group. Denote by s resp. s the set of all primes of k resp. of K which has degree 1 in K/k. We defined in the preceeding paper [3], which will be referred to as RI, the restricted idele group J_s resp. J_s of k resp. of K. And we proved that there is a one to one correspondence between some ((G)-invariant s-admissible) closed subgroups H of J_s and abelian extensions M of K normal over k.

In this paper we shall strengthen the above consequence and the condition of H to be \hat{s} -admissible in RI, by studying the norm residue mapping of $J_{\hat{s}}$ to the group of the maximal abelian extension (theorem 1 and 2). Moreover we shall determine the conductor of the field M corresponding to H (theorem 3). Since the \hat{s} -restricted idele group $J_{\hat{s}}$ of K is \mathfrak{G} -isomorphic to the direct product $J_{\hat{s}}^n$ of n-folds of the s-restricted idele group J_s of k, H is considered a subgroup of $J_{\hat{s}}^n$. So it will be interest to characterize the condition of \hat{s} -admissibility by terms of the ground field k. We shall do it for a special case of K/k, by substantially using the theorem 2 (theorem 4).

§1. Norm residue symbols.

Let k be an any algebraic number field of finite degree and $J=J_k$ be the (ordinary) idele group of k. Let S=S(k) be the set of all (finite or infinite) primes \mathfrak{p} of k, s be a subset of S, and s' be its complement in S; S-s. We defined in RI the s-restricted idele group J_s by the restricted direct product of \mathfrak{p} -adic completions $k_{\mathfrak{p}}$ over \mathfrak{p} -adic unit groups $U_{\mathfrak{p}}$ of k, where \mathfrak{p} runs over s.

Then we have

(1)
$$J = J_s \times J_{s'}$$
 (direct).

We shall fix this isomorphism and embed naturally J_s into J. Denote by π_s the projection of J to J_s . The *s*-restriction ρ_s is defined by any subset A of J_s by

(2)
$$\rho_s(A) = \pi_s(A \cap J_s).$$