Prolongations of tensor fields and connections to tangent bundles II

-Infinitesimal automorphisms-

By Kentaro Yano* and Shoshichi Kobayashi**

(Received Jan. 25, 1966)

1. Introduction.

In our previous paper [3] we defined the notion of complete lift. It is a natural way to prolong tensor fields and connections of a manifold M to the tangent bundle T(M). Referring the reader to our previous paper [3] for necessary notations and terminologies, we state our main result of the present paper.

THEOREM 1. Let ∇ be a torsionfree affine connection on a manifold M and ∇^c its complete life to T(M). Let X and Y be infinitesimal affine transformations of M and U a parallel tensor field of type (1,1) on M such that

(1)
$$U \circ R(Z, W) = R(UZ, W) = R(Z, UW) = R(Z, W) \circ U$$
 for all vector fields Z, W of M ,

where R denotes the curvature tensor field of ∇ . Then $X^c + Y^v + \iota U$ is an infinitesimal affine transformation of T(M).

Conversely, every infinitesimal affine transformation of T(M) may be uniquely written as $X^c+Y^v+\iota U$, where X, Y and U are as above, if M does not admit a nonzero parallel tensor field A of type (1,1) such that

(2)
$$A \circ R(Z, W) = R(AZ, W) = R(Z, AW) = R(Z, W) \circ A = 0$$

for all vector fields Z, W of M .

The following facts will be also shown.

REMARK 1. In any of the following cases M does not admit a nonzero parallel tensor field A of type (1, 1) satisfying (2):

- (a) M is non-flat and the linear holonomy group of M is irreducible:
- (b) M is Riemannian and has no Euclidean factor in its de Rham decomposition,

^{*} Supported by NSF Grant GP-3990.

^{**} Sloan Fellow, partially supported by NSF Grant GP-3982.