Computation of invariants in the theory of cyclotomic fields

By Kenkichi Iwasawa* and Charles C. Sims

(Received July 26, 1965)

1. Let a prime number p be fixed, and let $F_{n}, n \geqq 0$, denote the cyclotomic field of p^{n+1}-th roots of unity over the rational field \boldsymbol{Q}. Let $p^{c(n)}$ be the highest power of p dividing the class number h_{n} of F_{n}. Then there exist integers λ_{p}, μ_{p}, and $\nu_{p}\left(\lambda_{p}, \mu_{p} \geqq 0\right)$, depending only upon p, such that

$$
c(n)=\lambda_{p} n+\mu_{p} p^{n}+\nu_{p},
$$

for every sufficiently large integer $n^{1)}$. In the present paper, we shall determine, by the help of a computer, the coefficients λ_{p}, μ_{p}, and ν_{p} in the above formula for all prime numbers $p \leqq 4001$. We shall see in particular that $\mu_{p}=0$ for every $p \leqq 4001$. Let S_{n} denote the Sylow p-subgroup of the ideal class group of F_{n}. For the above primes, we shall determine not only the order $p^{c(n)}$ of S_{n} but also the structure of the abelian group S_{n} for every $n \geqq 0$.

Let $p=2$. Then we know by Weber's theorem that $c(n)=0, S_{n}=1$ for any $n \geqq 0$ so that $\lambda_{2}=\mu_{2}=\nu_{2}=0$. Therefore, we shall assume throughout the following that p is an odd prime, $p>2$.
2. Let \boldsymbol{Q}_{p} and \boldsymbol{Z}_{p} denote the field of p-adic numbers and the ring of p-adic integers, respectively. Let F be the union of all fields $F_{n}, n \geqq 0$. Then F is an abelian extension of \boldsymbol{Q}, and we denote the Galois group of F / \boldsymbol{Q} by G. For each p-adic unit u in \boldsymbol{Q}_{p}, there is a unique automorphism σ_{u} of F such that $\sigma_{u}(\zeta)=\zeta^{u}$ for any root of unity ζ in F with order a power of p. The mapping $u \rightarrow \sigma_{u}$ then defines a topological isomorphism of the group of p-adic units in \boldsymbol{Q}_{p} onto the compact abelian group G. Let Γ and Δ denote the subgroups of G corresponding to the group of 1-units in \boldsymbol{Q}_{p} and the group \boldsymbol{V} of all ($p-1$)-st roots of unity in \boldsymbol{Q}_{p}, respectively. Then we have

$$
G=\Gamma \times \Delta ;
$$

[^0]
[^0]: * The work of this author was supported in part by the National Science Foundation grant GP-2496.

 1) For the results on cyclotomic fields used in the present paper, see K. Iwasawa, On the theory of cyclotomic fields, Ann. of Math., 70 (1959), 530-561; K. Iwasawa, On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan, 16 (1964), 42-82.
