Computation of invariants in the theory of cyclotomic fields

By Kenkichi IWASAWA* and Charles C. SIMS

(Received July 26, 1965)

1. Let a prime number p be fixed, and let F_n , $n \ge 0$, denote the cyclotomic field of p^{n+1} -th roots of unity over the rational field Q. Let $p^{c(n)}$ be the highest power of p dividing the class number h_n of F_n . Then there exist integers λ_p , μ_p , and ν_p (λ_p , $\mu_p \ge 0$), depending only upon p, such that

$$c(n) = \lambda_p n + \mu_p p^n + \nu_p$$
,

for every sufficiently large integer n^{1} . In the present paper, we shall determine, by the help of a computer, the coefficients λ_p , μ_p , and ν_p in the above formula for all prime numbers $p \leq 4001$. We shall see in particular that $\mu_p = 0$ for every $p \leq 4001$. Let S_n denote the Sylow *p*-subgroup of the ideal class group of F_n . For the above primes, we shall determine not only the order $p^{c(n)}$ of S_n but also the structure of the abelian group S_n for every $n \geq 0$.

Let p=2. Then we know by Weber's theorem that c(n)=0, $S_n=1$ for any $n \ge 0$ so that $\lambda_2 = \mu_2 = \nu_2 = 0$. Therefore, we shall assume throughout the following that p is an odd prime, p > 2.

2. Let Q_p and Z_p denote the field of *p*-adic numbers and the ring of *p*-adic integers, respectively. Let *F* be the union of all fields F_n , $n \ge 0$. Then *F* is an abelian extension of *Q*, and we denote the Galois group of F/Q by *G*. For each *p*-adic unit *u* in Q_p , there is a unique automorphism σ_u of *F* such that $\sigma_u(\zeta) = \zeta^u$ for any root of unity ζ in *F* with order a power of *p*. The mapping $u \rightarrow \sigma_u$ then defines a topological isomorphism of the group of *p*-adic units in Q_p onto the compact abelian group *G*. Let Γ and Δ denote the subgroups of *G* corresponding to the group of 1-units in Q_p and the group *V* of all (p-1)-st roots of unity in Q_p , respectively. Then we have

$$G = \Gamma \times \varDelta$$
;

 $[\]ast$ The work of this author was supported in part by the National Science Foundation grant GP-2496.

¹⁾ For the results on cyclotomic fields used in the present paper, see K. Iwasawa, On the theory of cyclotomic fields, Ann. of Math., **70** (1959), 530-561; K. Iwasawa, On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan, **16** (1964), 42-82.