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For an algebraic variety $V$ and an algebraic group $G$ operating on $V$ ,

we can construct the variety $V_{G}$ of G-orbits on $V$ and the natural rational
mapping $f$ of $V$ to $V_{G}$ (cf. [S]). The variety $V_{G}$ is obtained as a model of
the subfield of all the G-invariant elements in the field of rational functions
on $V$ .

The purpose of this paper is to prove several results concerning on the
relations between the Albanese varieties (and the spaces of linear differential
forms of the first kind) of $V$ and of $V_{G}$ . Denoting by $G_{0}$ the connected com-
ponent of $G$ containing the identity element, we see that the finite group
$G/G_{0}$ operates on the variety $V_{G_{0}}$ of $G_{0}$-orbits on $V$ and $V_{G}$ is naturally bira-
tionally equivalent to the variety $(V_{Go})_{G/Go}$ of $(G/G_{0})$ -orbits on $V_{G_{0}}$ . Hence we
may restrict ourselves to the two cases: (i) $G$ is connected and (ii) $G$ is a
finite group; and the second case (ii) has already been treated in our previous
paper [3].

In \S 1, we shall give the definition of the variety $V_{G}$ and prove several
preliminary results.

In \S 2, we shall first construct the Albanese variety Alb $(V_{G})^{1)}$ of $V_{G}$ as a
quotient abelian variety of the Albanese variety $A=Alb(V)$ of $V$ (Theorem
1). In particular, for the connected algebraic group $G_{0}$ , we define a rational
homomorphism $\varphi$ of $G_{0}$ into $A$ and it will be proved that $A_{1}=A/\varphi(G_{0})$ is the
Albanese variety of $V_{a_{0}}$ (Theorem 2). Then we shall also prove that Alb (V)

is isogenous to the direct product of Alb $(V_{Go})$ and the Albanese variety of
the generic $G_{0}$ -orbit $\overline{G_{0}P}^{2)}$ on $V$ (Theorem 3) and we have the inequality
$ 0\leqq\dim$ Alb $(V)-\dim$ Alb $(V_{G_{0}})\leqq\dim V-\dim V_{G_{0}}$ . Moreover, by means of the
[-adic representations $M_{\iota}^{(A)}$ and $M_{\iota}^{(A^{*})}$ of the rings of endomorphisms of $A$ and
$A^{*}=Alb(G_{0})$ , we define the two matrix representations of the finite group
$G/G_{0}$ . Then, if $G$ operates regularly and effectively on $V$ , we shall show that
the dimension of $Alb(V_{G})$ is equal to the half of the difference of the multi-

1) For a variety $W$. Alb $(W)$ denotes an Albanese variety of $W$.
2) Cf. \S 1.


