On the variety of orbits with respect to an algebraic group of birational transformations

By Makoto IsHIDA

(Received June 12, 1965)

For an algebraic variety V and an algebraic group G operating on V, we can construct the variety V_{G} of G-orbits on V and the natural rational mapping f of V to V_{G} (cf. [8]). The variety V_{G} is obtained as a model of the subfield of all the G-invariant elements in the field of rational functions on V.

The purpose of this paper is to prove several results concerning on the relations between the Albanese varieties (and the spaces of linear differential forms of the first kind) of V and of V_{G}. Denoting by G_{0} the connected component of G containing the identity element, we see that the finite group G / G_{0} operates on the variety $V_{G_{0}}$ of G_{0}-orbits on V and V_{G} is naturally birationally equivalent to the variety $\left(V_{G_{0}}\right)_{G / G_{0}}$ of $\left(G / G_{0}\right)$-orbits on $V_{G_{0}}$. Hence we may restrict ourselves to the two cases: (i) G is connected and (ii) G is a finite group; and the second case (ii) has already been treated in our previous paper [3].

In §1, we shall give the definition of the variety V_{G} and prove several preliminary results.

In $\S 2$, we shall first construct the Albanese variety $\operatorname{Alb}\left(V_{G}\right)^{1)}$ of V_{G} as a quotient abelian variety of the Albanese variety $A=\operatorname{Alb}(V)$ of V (Theorem 1). In particular, for the connected algebraic group G_{0}, we define a rational homomorphism φ of G_{0} into A and it will be proved that $A_{1}=A / \varphi\left(G_{0}\right)$ is the Albanese variety of $V_{G_{0}}$ (Theorem 2). Then we shall also prove that $\operatorname{Alb}(V)$ is isogenous to the direct product of $\operatorname{Alb}\left(V_{G_{0}}\right)$ and the Albanese variety of the generic G_{0}-orbit $\overline{G_{0} P^{2}}$ on V (Theorem 3) and we have the inequality $0 \leqq \operatorname{dim} \operatorname{Alb}(V)-\operatorname{dim} \operatorname{Alb}\left(V_{G_{0}}\right) \leqq \operatorname{dim} V-\operatorname{dim} V_{G_{0}}$. Moreover, by means of the l-adic representations $M_{i}^{(A)}$ and $M_{i}^{\left(a^{*}\right)}$ of the rings of endomorphisms of A and $A^{*}=\operatorname{Alb}\left(G_{0}\right)$, we define the two matrix representations of the finite group G / G_{0}. Then, if G operates regularly and effectively on V, we shall show that the dimension of $\operatorname{Alb}\left(V_{G}\right)$ is equal to the half of the difference of the multi-

[^0]
[^0]: 1) For a variety W, $\operatorname{Alb}(W)$ denotes an Albanese variety of W.
 2) Cf. § 1 .
