On the functional inequality $\left| f\left(\frac{x+y}{2}\right) \right| \leq \frac{|f(x)| + |f(y)|}{2}$

by Hiroshi HARUKI

(Received Aug. 5, 1963) (Revised Sept. 18, 1963)

§1. Considering the Cauchy's functional equation

(1)
$$f\left(\frac{x+y}{2}\right) = \frac{f(x)+f(y)}{2},$$

where f(z) is an entire function of z, we have the following functional inequality:

(2)
$$\left| f\left(\frac{x+y}{2}\right) \right| \leq \frac{|f(x)| + |f(y)|}{2}.$$

In this paper we shall determine all the entire functions f(z) which satisfy (2).

THEOREM. If f(z) is an entire function of z, then all the functions which satisfy (2) are $(\alpha z + \beta)^n$ and $\exp(\alpha z + \beta)$ where α , β are arbitrary complex constants and n is an arbitrary natural number, and only these.

PROOF. We may assume that $f(z) \equiv 0$. Putting z = s + it (s, t real), $\varphi(s, t) = |f(z)|$ and using a real parameter τ^{til} , the function

$$F(\tau) = \varphi(a+h\tau, b+k\tau) + \varphi(a-h\tau, b-k\tau)$$

has a minimum $2\varphi(a,b)$ at $\tau=0$ by (2). Here a,b,h,k are arbitrary real constants which satisfy $f(a+ib) \neq 0$. Hence we have $F''(0) \geq 0$. Since

$$F''(0) = 2\{\varphi_{ss}(a, b)h^2 + 2\varphi_{st}(a, b)hk + \varphi_{tt}(a, b)k^2\}$$

we have

$$\varphi_{ss}(a,b)h^2+2\varphi_{st}(a,b)hk+\varphi_{tt}(a,b)k^2\geq 0$$
.

Since h, k are arbitrary, we have

(3)
$$\varphi_{st}^{2}(a,b) - \varphi_{ss}(a,b)\varphi_{tt}(a,b) \leq 0.$$

Since $f(a+ib) \neq 0$, there exists a regular branch g(z) of $\sqrt{f(z)}$ in a properly chosen vicinity V of $z = \gamma = a + ib$.

Using the Cauchy-Riemann equations, we have

$$\{\varphi_{st}(a,b)\}^2 - \varphi_{ss}(a,b)\varphi_{tt}(a,b) = 4\{|g(\gamma)g''(\gamma)|^2 - |g'(\gamma)|^4\}.$$

By (3) we have