On the field of definition of Borel subgroups of semi-simple algebraic groups

Dedicated to Professor Y. Akizuki for his 60th birthday
By Takashi Ono
(Received May 6, 1963)

Let k be a perfect field and let G be a connected semi-simple algebraic group defined over k. It is known that G has a maximal torus T defined over k (Rosenlicht [2]). Fixing once for all such a torus T, denote by \boldsymbol{B} the set of all Borel subgroups of G containing T. Our purpose is to prove the following

ThEOREM. Every group in \boldsymbol{B} is defined over k if and only if T is trivial over k. When that is so, all groups in \boldsymbol{B} are conjugate by k-rational points of the normalizer of T.

For some purpose the following trivial restatement is useful.
Corollary. Let K / k be an extension such that K is perfect. Then, every group in \boldsymbol{B} is defined over K if and only if T is split by K. When that is so, all groups in \boldsymbol{B} are conjugate by K-rational points of the normalizer of T.

Proof of Theorem. We begin with arranging the basic notions in Séminaire Chevally [1] from the Galois theoretical view point.

Denote by N the normalizer of T and by W the Weyl group N / T of T. Let \bar{k} be the algebraic closure of k and $\mathrm{g}=\mathrm{g}(\bar{k} / k)$ be the Galois group of \bar{k} / k. Since every coset of W contains a \bar{k}-rational point, one can define the action of g on W by

$$
w^{\sigma}=s^{\sigma} \bmod T, \quad \text { where } \quad w=s \bmod T \text { and } s \in N_{\bar{k}} . *
$$

The group g acts on the character module \hat{T} since every character is \bar{k}-rational. Furthermore, W acts on \hat{T} by

$$
(w \chi)(t)=\chi\left(s^{-1} t s\right), \quad \text { where } \quad w=s \bmod T, \quad s \in N .
$$

One verifies easily that

$$
(w \chi)^{\sigma}=w^{\sigma} \chi^{\sigma} \quad \text { for } \quad \sigma \in \mathfrak{g}, w \in W, \chi \in \hat{T} .
$$

In other words, \hat{T} has a (g, W)-module structure. By linearity, this structure is trivially extended to the vector space $\hat{T} \boldsymbol{Q}=\boldsymbol{Q} \otimes \hat{T}$.

[^0]
[^0]: * For an algebraic set A we denote by A_{K} the subset of K-rational points.

