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\S 1. Introduction

1. Let $D$ denote the open unit disk and $C$ the unit circle in the complex
plane. Further, let $S(e^{i\theta}, \alpha)$ denote the symmetric Stolz domain at $e^{i\theta}$ of open-
ing $ 2\alpha$ lying in $D$ . Eor certain classes of functions, holomorphic in $D$, results
are known concerning the order, or growth, of functions belonging to the
class. These results usually take two forms. One group of theorems gives a
type of global order. For example, if $f(z)$ is univalent and holomorphic in $D$

then Koebe’s distortion theorem gives that $|f^{\prime}(z)|\leqq\frac{(1+|z|)}{(1-|z|)^{3}}$ . However if we
restrict the choice of $z$ somewhat a better estimate on the order can be given.
Seidel and Walsh ([15], p. 338) showed that $|f^{\prime}(z)|(1-|z|)^{\frac{1}{2}}\rightarrow 0$ as $z$ tends to $e^{i\theta}$,
$z\in S(e^{i\theta}, \alpha)$ , for any $\alpha>0$ and almost all $0E[0,2z$). This type of result has
been called a “ statistical ” result on order by J. Lelong-Ferrand.

If $P(z)$ is any function, holomorphic in $D$ , which omits in $D$ the values $0$

and 1, then, as is well known, Schottky’s theorem gives a global order for

$P(z)$ to the effect that $|P(z)|\leqq e^{\overline{(1-}1\overline{zJ)}}A$ where $A$ is a positive constant depend-
ing on $P(O)$ . The main result in this paper will be to give a statistical theo-
rem concerning the order of $P(z)$ . In its simplest form the theorem states

that for almost all $\theta\in[0,2\pi$), any fixed $\mu>0$ and $\epsilon>0,$
$|P(z)|e\frac{-\mu}{(1-|z|)^{1/2+\epsilon}}$ tends

to $0$ as $z$ tends to $e^{i\theta}$ in any Stolz domain at $e^{t\theta}$ . Thus, as in the case of uni-
valent functions, a smaller estimate can be given for almost all $\theta\in[0,2\pi$), on
sequences approaching $e^{t\theta}$ within any Stolz domain at $e^{i\theta}$ .

In \S 2 we deduce the fundamental theorem used to prove the main theo-
rem. This fundamental theorem is similar in content to a result of Lelong-
Ferrand ([10], p. 23).

Some results are given in \S 3 on the order of functions holomorphic in $D$

for which information is known concerning the order of their Taylor coeffi-
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