A note on p-valent functions

By Kôichi SAKAGUCHI

(Received Jan. 22, 1962)
(Revised Jan. 29, 1962)

1. Introduction.

The set of close-to-convex univalent functions introduced by Kaplan [2] and Umezawa [3] contains many familiar univalent ones, for instance the starlike functions, the functions convex in one direction, the functions starlike with respect to symmetrical points [5], and the functions with derivative of positive real part in the unit circle. It, however, does not contain the spirallike ones.

Recently a wider sufficient condition for univalence which includes the weakest sufficient condition for spiral-likeness has been given by Ogawa [1], and it has been extended to the case of p-valence at the same time. His main theorem for p-valence may be stated without loss of equivalency as follows.

Theorem A. Let $f(z)=z^{p}+\cdots$ be regular in $|z| \leqq r$, and let $f(z) f^{\prime}(z) \neq 0$ for $0<|z| \leqq r$. If $f(z)$ satisfies the condition

$$
\int_{C}[d \arg d f(z)+k d \arg f(z)]>-\pi
$$

for all arcs C on $|z|=r$, where k is a real constant such that $k>-(1+1 / 2 p)$, then $f(z)$ is p-valent in $|z| \leqq r$.

The purpose of this note is to extend or improve Theorem A and some of other results in his paper [1].

2. Fundamental results.

Lemma 1. Let $f(z)=z^{p}+\cdots, \varphi(z)$ be regular in $|z| \leqq r$ and $|z|<+\infty$ respectively, and let $f^{\prime}(z) \neq 0$ for $0<|z| \leqq r$. If neither $f(z)$ nor $\varphi^{\prime}(\log f(z))$ vanishes on $|z|=r$ and the number of valence of $f(z)$ in $|z| \leqq r$ is larger than p, then there exists at least one arc C on $|z|=r$ such that

$$
\begin{equation*}
\int_{C} d \arg d \varphi(\log f(z)) \leqq-\pi \tag{2.1}
\end{equation*}
$$

Proof. As shown by Ogawa [1, p. 434], under our assumption on $f(z)$ there exists such a loop C_{w} on the image curve of $|z|=r$ under $w=f(z)$ as neither passes nor surrounds the origin and satisfies the inequality

