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Introduction.

Let $G$ be a discontinuous group acting on the upper half-plane $\mathfrak{X}$ . As a
subgroup of $GL(2, R),$ $G$ admits a tensor representation $M_{n}$ of degree $n$ . One
can then define the cohomology groups $H^{1}(M., G)$ after Eichler [1], and from
Shimura [6], there exists a canonical isomorphism between $H^{1}(1\psi_{n}, G)$ and the
space $S_{n+2}(G)$ of cusp forms of degree $n+2$ with respect to $G$ . Under certain
“ integrality “ assumptions on $G$ (for example, when $G=SL(2, Z)$ , these condi-
tions are satisfied), he defines a lattice in $H^{1}(1M_{n}, G)$ and proves that the torus
so obtained, admits a canonical structure of an abelian variety.

Suppose more generally, we have two discontinuous groups $G\subset G_{1}(G$

normal in $G_{1}$ and $(G_{1} : G)<\infty)$ . Then, associated with a real representation $R$

of $G_{1}/G$ , we can define the cohomology groups $H^{1}(R\otimes 1\psi_{n}, G_{1})$ and establish a
canonical isomorphism between $H^{1}(R\otimes 1\psi_{n}, G_{1})$ and the space $S_{n+2,R}(G_{1})$ of
vectors of cusp forms of degree $n+2$ with respect to $G$ which remains invari-
ant under the representation $R$ (cf. Theorem 1). If then $R$ is rational and $G_{1}$

satisfies the “ integrality ‘’ assumption [6], a lattice in $H^{1}(R\otimes M_{n}, G_{1})$ can be
defined, and as in the case of Shimura, this torus can be endowed with a ca-
nonical structure of an abelian variety (say) $A_{n+2,R}(G_{1})$ . In the special case $G_{1}$

$=\Gamma(1),$ $G=\Gamma_{1}(q)$ ($q$ , a prime) and $n=0$ , these have been noticed by Hecke [4].

We note finally that these abelian varieties provide a decomposition of
$A_{n+2}(H)$ for any subgroup $H$ with $G\subset H\subset G_{1}$ . Further in the special case $G_{1}$

$=\Gamma(1),$ $G=\Gamma_{1}(q)$ , one can define Hecke operators $\tau_{r}$ (for $r$ prime to q) as endo-
morphisms of these abelian varieties.
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It was noticed by the author, after the preparation of the manuscript that
Gunning has also proved Theorem 1 in [2], but however our proof is different.

$NoTATIONS$ .
$\Gamma(1)=SL(2, Z)=\{\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ with $a,$ $b,$ $c,$ $d$ integral and $ad-bc=1\}$


