Differentiable 7-manifolds with a certain homotopy type

By Itiro TAMURA

(Received Dec. 22, 1961) (Revised March 29, 1962)

J. Milnor [10] has determined the so-called J-equivalence (h-cobordism) classes of oriented differentiable 7-manifolds having the homotopy type of the 7-sphere, and S. Smale [13] has proved that such manifolds are homeomorphic to the 7-sphere and the J-equivalence classes are the same as the diffeomorphic classes in this case. Thus compact unbounded oriented differentiable 7-manifolds which are homotopy spheres were completely determined. There exist precisely 28 such differentiable 7-manifolds which form a cyclic group Θ^{τ} under the connected sum.

In this note we shall consider compact unbounded 2-connected oriented differentiable 7-manifolds whose third homology groups are cyclic of order 3, having trivial Steenrod operations. We shall show that there exist precisely 56 differentiable 7-manifolds of this homotopy type and that they are obtained from the standard one by connected sums of elements of Θ^{τ} and the orientation-reversing.

1. Let M^{τ} be the compact unbounded 2-connected oriented (C°) differentiable 7-manifold such that $H_3(M^{\tau}; Z) \approx Z_3$ and that the Steenrod operation $\mathscr{D}_3^1: H^3(M^{\tau}; Z_3) \to H^{\tau}(M^{\tau}; Z_3)$ is trivial, namely, for $u \in H^3(M^{\tau}; Z_3)$

$(P) \qquad \qquad \mathcal{P}_{3}^{1}(u) = 0.$

LEMMA 1. The condition (P) is equivalent to $p_1(M^{\gamma}) = 0$, where $p_1(M^{\gamma})$ is the first Pontrjagin class of M^{γ} .

PROOF. This lemma follows from the formula given by Hirzebruch [6]:

$$p_1(M^7) \cup u = \mathcal{P}_3^1(u) \mod 3$$

for $u \in H^3(M^7; \mathbb{Z}_3)$.

LEMMA 2. M^{τ} is a π -manifold.

PROOF. Suppose that M^{τ} is imbedded in a high dimensional Euclidean space $R^{\tau+N}$. Denote by ν^N the normal bundle of M^{τ} . Let K be a triangulation of M^{τ} . Let us define a (continuous) field of normal N-frames on M^{τ} by stepwise extensions on the skeletons $K^{(q)}$ $(q=0,1,\cdots,7)$ of K using the obstruction theory in the well-known manner. Since $H^q(M^{\tau};Z)=0$ (q=1,2,3)and $\pi_2(SO(N))=0$, we can define a field f of normal N-frames on $K^{(3)}$. Let $c(f) \in Z^4(M^{\tau};Z)$ be the obstruction cocycle to extend f in $K^{(4)}$, Then the first