Differentiable 7-manifolds with a certain homotopy type

By Itiro TAMURA

(Received Dec. 22, 1961)
(Revised March 29, 1962)

Abstract

J. Milnor $[10]$ has determined the so-called J-equivalence (h-cobordism) classes of oriented differentiable 7 -manifolds having the homotopy type of the 7 -sphere, and S. Smale [13] has proved that such manifolds are homeomorphic to the 7 -sphere and the J-equivalence classes are the same as the diffeomorphic classes in this case. Thus compact unbounded oriented differentiable 7 -manifolds which are homotopy spheres were completely determined. There exist precisely 28 such differentiable 7 -manifolds which form a cyclic group Θ^{7} under the connected sum.

In this note we shall consider compact unbounded 2 -connected oriented differentiable 7 -manifolds whose third homology groups are cyclic of order 3, having trivial Steenrod operations. We shall show that there exist precisely 56 differentiable 7 -manifolds of this homotopy type and that they are obtained from the standard one by connected sums of elements of Θ^{7} and the orienta-tion-reversing.

1. Let M^{7} be the compact unbounded 2 -connected oriented ($\left.C^{\infty}-\right)$ differentiable 7 -manifold such that $H_{3}\left(M^{7} ; Z\right) \approx Z_{3}$ and that the Steenrod operation $\mathscr{P}_{3}^{1}: H^{3}\left(M^{7} ; Z_{3}\right) \rightarrow H^{7}\left(M^{7} ; Z_{3}\right)$ is trivial, namely, for $u \in H^{3}\left(M^{7} ; Z_{3}\right)$

$$
\begin{equation*}
\mathscr{P}_{3}^{1}(u)=0 . \tag{P}
\end{equation*}
$$

LEMMA 1. The condition (P) is equivalent to $p_{1}\left(M^{7}\right)=0$, where $p_{1}\left(M^{7}\right)$ is the first Pontrjagin class of M^{7}.

Proof. This lemma follows from the formula given by Hirzebruch [6]:

$$
p_{1}\left(M^{7}\right) \cup u=\mathscr{P}_{3}^{1}(u) \quad \bmod 3
$$

for $u \in H^{3}\left(M^{7} ; Z_{3}\right)$.
Lemma 2. M^{7} is a π-manifold.
Proof. Suppose that M^{7} is imbedded in a high dimensional Euclidean space R^{7+N}. Denote by ν^{N} the normal bundle of M^{7}. Let K be a triangulation of M^{7}. Let us define a (continuous) field of normal N-frames on M^{7} by stepwise extensions on the skeletons $K^{(q)}(q=0,1, \cdots, 7)$ of K using the obstruction theory in the well-known manner. Since $H^{q}\left(M^{7} ; Z\right)=0(q=1,2,3)$ and $\pi_{2}(S O(N))=0$, we can define a field f of normal N-frames on $K^{(3)}$. Let $c(f) \in Z^{4}\left(M^{7} ; Z\right)$ be the obstruction cocycle to extend f in $K^{(4)}$, Then the first

