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Let $M,$ $N$ be closed subgroups of a linear algebraic group. It is mentioned
in [1], that D. Hertzig proved that the commutator group $[1\psi, N]$ is closed
if $M,$ $N$ are normal. (A proof is given in [2] 3-04 Proposition 1. This fact
brings about some simplification of Borel’s arguments as noted in [1].) We shall
give in this paper a necessary and sufficient condition for $M,$ $N$ to the effect
that $[1\psi, N]$ be closed, (Theorem 8 below,) from which the result of Hertzig
easily follows (cf. [2], 3), and which will have also some interesting conse-
quences. (Corollaries 9, 10, 11, below.)

In this paper we use the following conventions:
The subgroup generated by $G_{1},$ $G_{2}$ is denoted by $G_{1}\vee G_{2}$ , and the connected
component of the identity of an algebraic group $G$ is denoted by $G_{0}$ .

The authors owe a great deal to M. Nagata, who gave us many useful
suggestions. We offer our cordial thanks to him.

LEMMA 1. Let $G$ be an algebraic group and let $S_{1},$ $\cdot\cdot i$ , $S_{m}$ be its closed irre-
ducible subsets. Let $f_{\lambda}(x_{1}, \cdots , x_{m})(\lambda\in\Lambda)$ be words with $x_{i}\in S_{i}$ , such that for suit-
able $(a_{1}^{\lambda}, \cdots , a_{m}^{\lambda})\in S_{1}\times\cdots\times S_{m},f_{\lambda}(a^{\lambda_{1}}, , , a_{m}^{\lambda})=1$ for each $\lambda\in\Lambda$ . Then the subgroup
$H$ of $G$ generated by $f_{\lambda}(x_{1}$ , $\cdot$ .. $x_{m})$ , where $(x_{1}$ , $\cdot$ . $x_{m})$ ranges over $S_{1}\times\cdots\times S_{m}$ and
$\lambda$ ranges over $\Lambda$ , is closed and connected.

PROOF. For each $\lambda\in\Lambda$ , let $C_{\lambda}$ be the set of all $f$, $(x_{1}$ , $\cdot$ .. $x_{m})$ with $x_{i}\in S_{i}$ .
Then the set $C_{\lambda 1}\cdots C_{\lambda_{t}}$ of products $y_{1}\cdots y_{t}(y_{i}\in C_{)_{i}})$ is the image of a rational
map from $(S_{1}\times\cdots\times S_{m})\times\cdots\times(S_{1}\times\cdots\times S_{m})$ (t-ple product) into $G$ , whence
$C_{\lambda_{1}}$ ... $C_{)_{t}}$ is a thick set (‘ ensemble \’epais’ cf. [1]), i. e. the closure $C(\lambda_{1}, , \lambda_{t})$

of $C_{\lambda_{1}}\cdots C_{\iota}$, is irreducible and $C_{\lambda_{1}}\cdots C_{\lambda_{t}}$ contains a non-empty open subset of
$C(\lambda_{1}, \cdots , \lambda_{t})$ . Since $1\in C_{\lambda}$ , we see that $C_{\lambda_{1}}\cdots C_{\lambda_{t}}\subseteqq C_{\lambda_{1}}\cdots C_{\lambda_{t}}C_{\lambda_{t+1}}$ , whence $C(\lambda_{1},$ $\cdots$ ,
$\lambda_{t})\subseteqq C(\lambda_{1}, \cdots , \lambda_{t}, \lambda_{t+1})$ . By the fact that $C(\lambda_{1}, \cdots, \lambda_{t})$ are irreducible subvarieties
of $G$ , we see that there is a $C(\lambda_{1}$ , $\cdot$ .. $\lambda_{t})$ , say $C(\lambda_{1}$ , $\cdot$ .. $\lambda_{u})$ , such that every
$C(\lambda_{1}^{\prime}, \cdots , \lambda_{s}^{\prime})$ is contained in $C(\lambda_{1}, \cdots , \lambda_{u})$ . ($C(\lambda_{1}, \cdots , \lambda_{t})$ which has maximum dimen-
sion is a required one). Then $C_{\lambda_{1}}\cdots C_{J_{u}}\subseteqq H\subseteqq C(\text{{\it \‘{A}}}_{1}$ , $\cdot$ .. $\lambda_{u})$ . $C(\lambda_{1}$ , $\cdot$ .. $\lambda_{u})$ is the
closure of $H$, hence is a group. Since $H$ contains a non-empty open subset of
$C(\lambda_{1}$ , $\cdot$ .. $\lambda_{u})$ (because $C_{\lambda_{1}}\cdots C_{\lambda_{u}}$ does), we see that $H=C(\lambda_{1}$ , $\cdot$ .. $\lambda_{u})$ . This com-
pletes the proof.

PROPOSITION 2. Let $1\psi$ and $N$ be closed subgroups of an algebraic group $G$ ,


