## Closedness of some subgroups in linear algebraic groups

By T. MIYATA, T. ODA and K. OTSUKA

(Received June 29, 1961) (Revised Feb. 10, 1962)

Let M, N be closed subgroups of a linear algebraic group. It is mentioned in [1], that D. Hertzig proved that the commutator group [M, N] is closed if M, N are normal. (A proof is given in [2] 3-04 Proposition 1. This fact brings about some simplification of Borel's arguments as noted in [1].) We shall give in this paper a necessary and sufficient condition for M, N to the effect that [M, N] be closed, (Theorem 8 below,) from which the result of Hertzig easily follows (cf. [2], 3), and which will have also some interesting consequences. (Corollaries 9, 10, 11, below.)

In this paper we use the following conventions:

The subgroup generated by  $G_1$ ,  $G_2$  is denoted by  $G_1 \vee G_2$ , and the connected component of the identity of an algebraic group G is denoted by  $G_0$ .

The authors owe a great deal to M. Nagata, who gave us many useful suggestions. We offer our cordial thanks to him.

LEMMA 1. Let G be an algebraic group and let  $S_1, \dots, S_m$  be its closed irreducible subsets. Let  $f_{\lambda}(x_1, \dots, x_m)(\lambda \in \Lambda)$  be words with  $x_i \in S_i$ , such that for suitable  $(a_1^{\lambda}, \dots, a_m^{\lambda}) \in S_1 \times \dots \times S_m$ ,  $f_{\lambda}(a_1^{\lambda}, \dots, a_m^{\lambda}) = 1$  for each  $\lambda \in \Lambda$ . Then the subgroup H of G generated by  $f_{\lambda}(x_1, \dots, x_m)$ , where  $(x_1, \dots, x_m)$  ranges over  $S_1 \times \dots \times S_m$  and  $\lambda$  ranges over  $\Lambda$ , is closed and connected.

PROOF. For each  $\lambda \in A$ , let  $C_{\lambda}$  be the set of all  $f_{\lambda}(x_1, \cdots, x_m)$  with  $x_i \in S_i$ . Then the set  $C_{\lambda_1} \cdots C_{\lambda_t}$  of products  $y_1 \cdots y_t$  ( $y_i \in C_{\lambda_i}$ ) is the image of a rational map from  $(S_1 \times \cdots \times S_m) \times \cdots \times (S_1 \times \cdots \times S_m)$  (t-ple product) into G, whence  $C_{\lambda_1} \cdots C_{\lambda_t}$  is a thick set ('ensemble épais' cf. [1]), i.e. the closure  $C(\lambda_1, \cdots, \lambda_t)$  of  $C_{\lambda_1} \cdots C_{\lambda_t}$  is irreducible and  $C_{\lambda_1} \cdots C_{\lambda_t}$  contains a non-empty open subset of  $C(\lambda_1, \cdots, \lambda_t)$ . Since  $1 \in C_{\lambda}$ , we see that  $C_{\lambda_1} \cdots C_{\lambda_t} \subseteq C_{\lambda_1} \cdots C_{\lambda_t} C_{\lambda_{t+1}}$ , whence  $C(\lambda_1, \cdots, \lambda_t) \subseteq C(\lambda_1, \cdots, \lambda_t, \lambda_{t+1})$ . By the fact that  $C(\lambda_1, \cdots, \lambda_t)$  are irreducible subvarieties of G, we see that there is a  $C(\lambda_1, \cdots, \lambda_t)$ , say  $C(\lambda_1, \cdots, \lambda_u)$ , such that every  $C(\lambda_1', \cdots, \lambda_s')$  is contained in  $C(\lambda_1, \cdots, \lambda_u)$ .  $C(\lambda_1, \cdots, \lambda_t)$  which has maximum dimension is a required one). Then  $C_{\lambda_1} \cdots C_{\lambda_u} \subseteq H \subseteq C(\lambda_1, \cdots, \lambda_u)$ .  $C(\lambda_1, \cdots, \lambda_u)$  is the closure of H, hence is a group. Since H contains a non-empty open subset of  $C(\lambda_1, \cdots, \lambda_u)$  (because  $C_{\lambda_1} \cdots C_{\lambda_u}$  does), we see that  $H = C(\lambda_1, \cdots, \lambda_u)$ . This completes the proof.

PROPOSITION 2. Let M and N be closed subgroups of an algebraic group G,