On differentiable manifolds with contact metric structures

By S. SASAKI and Y. HATAKEYAMA

(Received April 14, 1961) (Revised Feb. 17, 1962)

§1. Introduction.

A (2n+1)-dimensional differentiable manifold M^{2n+1} of class C^{∞} is said to have an almost contact structure or to be an almost contact manifold if the structural group of its tangent bundle reduces to $U(n) \times 1$, where U(n) means the real representation of the unitary group of *n* complex variables (cf. [1]). On the other hand, a differentiable manifold M^{2n+1} of class C^{∞} is said to have (ϕ, ξ, η) structure if there exist three tensor fields ϕ_j^i , ξ^i and η_j satisfying the relations

(1.1)
$$\xi^i \eta_i = 1,$$

(1.2)
$$\operatorname{rank}(\phi_j^i) = 2n,$$

$$(1.3) \qquad \qquad \phi_j^i \xi^j = 0 ,$$

(1.4)
$$\phi_{j}^{i}\eta_{i} = 0$$
,

(1.5)
$$\phi_j^i \phi_k^j = -\delta_k^i + \xi^i \eta_k \,.$$

The notions of almost contact structure and (ϕ, ξ, η) -structure are equivalent in the sense that every almost contact manifold admits a (ϕ, ξ, η) -structure and every differentiable manifold with (ϕ, ξ, η) -structure is almost contact. (cf. [2]) So, in this paper we use the word *almost contact structure* in stead of (ϕ, ξ, η) structure.

Now, every differentiable manifold M^{2n+1} with almost contact structure admits a Riemannian metric g which satisfies the relations

$$(1.6) g_{ij}\xi^j = \eta_i,$$

(1.7)
$$g_{ij}\phi_h^i\phi_k^j = g_{hk} - \eta_h\eta_k$$

We call g an associated Riemannian metric of the almost contact structure. Although we have called the (ϕ, ξ, η) -structure with associated Riemannian metric g as the (ϕ, ξ, η, g) -structure in [2], we shall call it an *almost contact* metric structure in this paper.

By virtue of (1.1) and (1.6), ξ^i is a unit vector field. The tensor

$$(1.8) \qquad \qquad \phi_{ij} = g_{ih} \phi_j^h$$