On the zeta-functions of the algebraic curves uniformized by certain automorphic functions

By Goro SHIMURA

(Received March 31, 1961)

Introduction. After Hasse and Weil, we can attach a zeta-function to every algebraic variety defined over an algebraic number field. In contrast with its importance, our knowledge of the zeta-function of this kind is little. At present, as far as I know, the zeta-function is determined only in the following two cases.

- I) Abelian varieties with sufficiently many complex multiplications [30, 3, 27 \neg].
- II) Algebraic curves uniformized by modular functions belonging to congruence-subgroups [6, 22].

Here we note that the determination of the zeta-function of a curve is essentially the same as the determination of the zeta-function of its jacobian. Now, in all these cases, the zeta-functions are meromorphic on the whole complex plane and satisfy functional equations, as conjectured by Hasse.

The purpose of the present paper is to supply a new class of algebraic curves, for which Hasse's conjecture is true, and of which the curves of II) are particular cases. Our principal result is as follows. Let ϕ be an indefinite quaternion algebra over the rational number field Q_i , and o a maximal order in Φ . Take a positive integer N which is prime to the discriminant of Φ and denote by Γ_N the group of units γ of \mathfrak{o} , with positive reduced norm, such that $\gamma \equiv 1 \mod N_0$. As Φ has a faithful representation by real matrices of degree 2, Γ_N is considered as a Fuchsian group on the upper half plane \mathfrak{H} . If Φ has no zero-divisor, $\Gamma_N \setminus \mathfrak{F}$ is compact, while if Φ is the total matric algebra of degree 2 over Q, Γ_N is nothing but the principal congruence-subgroup of $SL(2, \mathbf{Z})$ of level N. Now, according to Eichler [7], we can develop the theory of Hecke's operators for cusp-forms with respect to Γ_N . We obtain then Dirichlet-series D(s), meromorphic on the whole plane, having Eulerproducts, and satisfying functional equations. Let \Re_N be the field of automorphic functions with respect to Γ_N . We can find an algebraic curve \mathfrak{C}_N , defined over Q, whose function-field is identified with \Re_N . Our main theorem asserts that the zeta-function of \mathfrak{C}_N is determined by the Dirichlet-series D(s) for cusp-forms of degree 2.