Fractional powers of dissipative operators

By Tosio KATO

(Received March 24, 1961)

Introduction

The object of the present paper is to investigate the properties of the fractional powers A^{α} of linear operators A in a Hilbert space \mathfrak{H} , when -A is closed and *maximal dissipative* in the sense of Phillips [15, 16]. -A is said to be dissipative if $\operatorname{Re}(Au, u) \geq 0$ for every $u \in \mathfrak{T}[A]$, and -A is maximal dissipative if it has no proper dissipative extension. It is known (see [15]) that a closed, maximal dissipative operator is densely defined, that -A is closed and maximal dissipative if and only if $-A^*$ is, and also if and only if -A is the infinitesimal generator of a *contraction semi-group* $\{\exp(-tA)\}_{0 < t < \infty}$, that is, $\|\exp(-tA)\| \leq 1$.

Following a suggestion due to Friedrichs [4], we shall say that A is *accretive* if -A is dissipative. In what follows we shall be concerned with accretive rather than with dissipative operators.

The fractional powers A^{α} can be defined in a natural way, at least for $0 \leq \alpha \leq 1$, if A is closed and maximal accretive, and A^{α} are again closed and maximal accretive. Such fractional powers have been defined for a more general class of linear operators in Banach spaces by several authors (see, among others, Balakrishnan [1, 2], Glushko and Krein [5], Kato [9], Krasnosel'skii and Pustylnik [12], Krasnosel'skii and Sobolevskii [13], Sobolevskii [17], Solomiak [18], Yosida [19]).

One of the important results to be proved in the present paper is that, if A is closed and maximal accretive, A^{α} and $A^{*\alpha}$ are *comparable* for $0 \leq \alpha < 1/2$; by this we mean that A^{α} and $A^{*\alpha}$ have the same domain \mathfrak{D}_{α} and that the ratios $||A^{*\alpha}u||/||A^{\alpha}u||$ for $u \in \mathfrak{D}_{\alpha}$ are bounded from above and from below by positive constants. Another result is that A^{α} and $A^{*\alpha}$ have an *acute angle* for $0 \leq \alpha < 1/2$; by this is meant that $\operatorname{Re}(A^{\alpha}u, A^{*\alpha}u)/||A^{\alpha}u|| ||A^{*\alpha}u||$ is bounded from below by a positive constant (see Sobolevskii [17]). These results are remarkable in view of the fact that nothing is assumed for the relationship between the domains of A and A^* themselves or for the angle between A and A^* .

It follows from these results that $H_{\alpha} = (A^{\alpha} + A^{*\alpha})/2$ is nonnegative selfadjoint and that it is comparable, and has acute angle, with both A^{α} and