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Introduction

The object of the present paper is to investigate the properties of the
fractional powers $A^{\alpha}$ of linear operators $A$ in a Hilbert space $\mathfrak{H}$ , when $-A$ is
closed and maximal dissipative in the sense of Phillips $[15, 16]$ . $-A$ is said to
be dissipative if ${\rm Re}(Au, u)\geqq 0$ for every $u\in \mathfrak{T}[A]$ , and $-A$ is maximal dis-
sipative if it has no proper dissipative extension. It is known (see [15]) that
a closed, maximal dissipative operator is densely defined, that $-A$ is closed
and maximal dissipative if and only if $-A^{*}$ is, and also if and only if $-A$ is
the infinitesimal generator of a contraction semi-group $\{\exp(-tA)\}_{0<\iota<\infty}$ , that
is, $\Vert\exp(-tA)\Vert\leqq 1$ .

Following a suggestion due to Friedrichs [4], we shall say that $A$ is
accretive if $-A$ is dissipative. In what follows we shall be concerned with
accretive rather than with dissipative operators.

The fractional powers $A^{\alpha}$ can be defined in a natural way, at least for
$0\leqq\alpha\leqq 1$ , if $A$ is closed and maximal accretive, and $A^{\alpha}$ are again closed and
maximal accretive. Such fractional powers have been defined for a more
general class of linear operators in Banach spaces by several authors (see,

among others, Balakrishnan $[1, 2]$ , Glushko and Krein [5], Kato [9], Kras-
nosel’skii and Pustylnik [12], Krasnosel’skii and Sobolevskii [13], Sobolevskii
[17], Solomiak [18], Yosida [19]).

One of the important results to be proved in the present paper is that, if
$A$ is closed and maximal accretive, $A^{\alpha}$ and $A^{*\alpha}$ are comparable for $0\leqq\alpha<1/2$ ;
by this we mean that $A^{t}$ and $A^{*\alpha}$ have the same domain $\mathfrak{D}_{a}$ and that the
ratios $\Vert A^{*\alpha}u\Vert/\Vert A^{a}u\Vert$ for $u\in \mathfrak{D}_{a}$ are bounded from above and from below by
positive constants. Another result is that $A^{\alpha}$ and $A^{*\alpha}$ have an acute angle for
$0\leqq\alpha<1/2$ ; by this is meant that ${\rm Re}(A^{a}u, A^{*\alpha}u)/\Vert A^{a}u\Vert\Vert A^{*\alpha}u\Vert$ is bounded
from below by a positive constant (see Sobolevskii [17]). These results are
remarkable in view of the fact that nothing is assumed for the relationship
between the domains of $A$ and $A^{*}$ themselves or for the angle between $A$

and $A^{*}$ .
It follows from these results that $H_{a}=(A^{a\prime}+A^{*\alpha})/2$ is nonnegative self-

adjoint and that it is comparable, and has acute angle, with both $A^{a}$ and


