J. Math. Soc. Japan Vol. 13, No. 3, 1961

On coverings of algebraic varieties

By Makoto Ishida

(Received Dec. 9, 1960)

Let U and V be algebraic varieties, and $f: U \to V$ a Galois covering of degree *n*, defined over a field *k*; let *A* and *A*₀ be Albanese varieties attached to *U* and *V* respectively. Then, in the preceding paper [3], we have proved, among several other results, the following two statements:

1) Suppose that V is embedded in some projective space. Let C be a generic hyperplane section curve on V over k and $W=f^{-1}(C)$ the inverse image of C on U; let J and J_0 be Jacobian varieties attached to (the normalization of) W and C respectively. Then the curve W generates A and we have the inequality

(*)

$$\dim J - \dim A \ge \dim J_0 - \dim A_0$$

2) Suppose that U and V are complete and non-singular. Then, under the assumption that the degree *n* is prime to the characteristic of the universal domain, the equality dim $\mathfrak{D}_0(U) = \dim \mathfrak{D}_0(A)$ implies the equality dim $\mathfrak{D}_0(V) = \dim \mathfrak{D}_0(A_0)$.¹⁾

In the present paper, we shall generalize these results to an arbitrary (i. e. not necessarily Galois) covering $f: U \rightarrow V$. Moreover, the result 2) will be replaced by a better one, i.e. the inequality

(**)
$$\dim \mathfrak{D}_0(U) - \dim \mathfrak{D}_0(A) \ge \dim \mathfrak{D}_0(V) - \dim \mathfrak{D}_0(A_0).$$

Here we note that the numbers on the both sides of (*) and (**) are nonnegative (cf. Lang [4] and Igusa [1]) and that the assumption on the degree n in (**) is essential as easily seen in Igusa [2]. It seems to be worth noting that the inequalities (*) and (**) may be rewritten in the following forms:

$$(*)' \qquad \dim J - \dim J_0 \ge \dim A - \dim A_0.$$

(**)'
$$\dim \mathfrak{D}_0(U) - \dim \mathfrak{D}_0(V) \ge \dim \mathfrak{D}_0(A) - \dim \mathfrak{D}_0(A_0).$$

The numbers on the both sides of (*)' and (**)' are also non-negative. As in [3], using the formula of Hurwitz on the genera of curves, we can deduce from (*)' an estimation of the irregularity of the covering variety U of V. In addition to these two inequalities, we shall prove, for this arbitrary covering $f: U \to V$, some analogous results to the main theorems in [3].

¹⁾ For a complete, non-singular variety W, we donote by $\mathfrak{D}_0(W)$ the space of the linear differential forms of the first kind on W.